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Allelic mapping bias in RNA-sequencing is not a
major confounder in eQTL studies
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Abstract

Background: RNA sequencing (RNA-seq) is the current gold-standard method to quantify gene expression for
expression quantitative trait locus (eQTL) studies. However, a potential caveat in these studies is that RNA-seq reads
carrying the non-reference allele of variant loci can have lower probability to map correctly to the reference
genome, which could bias gene quantifications and cause false positive eQTL associations. In this study, we analyze
the effect of this allelic mapping bias in eQTL discovery.

Results: We simulate RNA-seq read mapping over 9.5 M common SNPs and indels, with 15.6% of variants showing
biased mapping rate for reference versus non-reference reads. However, removing potentially biased RNA-seq reads
from an eQTL dataset of 185 individuals has a very small effect on gene and exon quantifications and eQTL discovery.
We detect only a handful of likely false positive eQTLs, and overall eQTL SNPs show no significant enrichment for high
mapping bias.

Conclusion: Our results suggest that RNA-seq quantifications are generally robust against allelic mapping bias, and that
this does not have a severe effect on eQTL discovery. Nevertheless, we provide our catalog of putatively biased loci to
allow better controlling for mapping bias to obtain more accurate results in future RNA-seq studies.
Background
Analysis of gene expression variation and its genetic
causes is essential for better understanding of pheno-
typic variation and susceptibility to complex traits and
diseases [1,2]. One of the most popular methods to
find genetic variants that affect gene expression levels
is expression quantitative trait locus (eQTL) analysis
[3-5] that is more and more often based on RNA se-
quencing (RNA-seq) [6,7], which has become the gold-
standard method to quantify gene expression. However,
gene expression quantification from RNA-seq can poten-
tially be biased by genetic variation affecting the mapping
of RNA-seq reads, as those reads that carry the non-
reference allele can have a lower probability of mapping
correctly to the reference genome [8]. This is analogous to
single-nucleotide polymorphisms (SNPs) in probes of
expression microarrays, which is a relatively well-documented
technical problem [9,10]. Similar problems may arise in
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alignment of ChIP-Seq reads and chromatin state QTL
mapping. In RNA-seq analysis, accounting for genotype-
dependent mapping bias has been important for obtaining
more accurate and reliable results from analysis of allelic
specific expression (ASE) [8,11-14], allelic specific binding
(ASB) [12], and DNaseI sensitivity QTLs [15]; neverthe-
less, similar analyses have not been done for eQTLs.
In this study we examined if allelic mapping bias of

RNA-seq reads is a confounding factor in eQTL analysis.
We estimated mapping bias in SNPs and insertions-
deletions (indels) from Europeans (CEU, GBR, TSI, FIN,
IBS) of 1000 Genomes [16] Phase 1 data by simulations.
We then assessed the effects of this mapping bias on exon
quantification and subsequently on eQTL discovery using
an RNA-seq dataset. Our results suggest that mapping
bias does not severely affect eQTL findings and gene ex-
pression quantification. However, a small proportion of
eQTL associations are likely to be false positives due to al-
lelic mapping bias, and correcting for these effects will
lead to more accurate results.
al Ltd. This is an Open Access article distributed under the terms of the Creative
ommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and
iginal work is properly credited. The Creative Commons Public Domain
g/publicdomain/zero/1.0/) applies to the data made available in this article,

mailto:emmanouil.dermitzakis@unige.ch
mailto:tlappalainen@nygenome.org
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/publicdomain/zero/1.0/


Panousis et al. Genome Biology 2014, 15:467 Page 2 of 8
http://genomebiology.com/2014/15/9/467
Results
Different alignment strategies to identify mapping bias
For 9.5 M variant sites, we first created simulated
single-end 50 bp RNA-seq reads, first using the gen-
ome sequence as is for a total of 456,210,044 unique
start sites, with reads carrying both reference and non-
reference haplotypes. After alignment of these reads to
the reference genome with BWA [17], we found that as
much as 13.86% (63.2 M) of the unique start sites showed
unequal mapping of reads carrying different alleles with
78.30% coming from SNPs and 21.70% coming from
indels. Summarizing this at the level of variants, 12.6%
(1,088,730) of the SNPs and 45.6% (397,399) of the indels
had >5% difference in the mapping rate of all overlapping
reference and non-reference reads (Figure 1A, Table 1),
with the bias being significantly higher in indels (Mann-
Whitney P value <2.2e-16; Figure 1A). However, because
indels are much less common, the majority of variants
causing mapping bias are actually SNPs. In 96.1% of the
biased variants, the bias favored the reference allele, which
is the only possible direction for those without any flank-
ing variants within the 50 bp range. However, if the refer-
ence allele of one variant is linked to an alternative allele
of a second, flanking variant, it is possible to have map-
ping bias in favor of the non-reference allele of the first
variant due to secondary effect, which we observe in a
small proportion of cases (3.89%). We provide the simu-
lation results as a resource for future studies, both sum-
marized per variant and as a list of biased start sites
(Additional file 1). To verify the robustness of these re-
sults to the choice of the mapper, we performed the
alignment also with the GEM mapper [18] by using the
GEMTools pipeline [19], and obtained similar results
(Table 1, Additional file 1: Table S1). Specifically, the num-
ber of unique start sites that showed unequal mapping of
Figure 1 Estimation of mapping bias and its effect on expression qua
estimated by simulated single-end 50 bp RNA-seq reads based on the gen
reads with simulated mapping bias on exon quantifications (log10 scale).
reads carrying different alleles was 67.1 M with GEM, of
which 61.1 M were shared with the biased start sites iden-
tified by BWA. Moreover, for a given variant we compared
the ratio of reference allele in simulated reads mapped
with BWA and GEM. The ratios were highly correlated
(rho =0.98 for SNPs and 0.88 for indels, Figure 2A and B)
suggesting that the choice of mapper has only minor
effects.
The results above were based on reads simulated using

the genome sequence, but a key property of RNA-seq are
reads that span exon junctions. To assess if such split
reads affect allelic mapping bias, we selected the most
common transcript across tissues (see Methods) and sim-
ulated single-end 50 bp reads for variants in these tran-
scripts using the annotated exon structure, and mapped
the simulated reads with GEM that can map reads across
splice junctions. We compared these results from variants
in simulated transcripts to the genome-based simulations
mapped with GEM, rather than BWA used in most ana-
lyses, in order to avoid confounding differences between
mappers. The percentage of variants that show a >5%
difference in the reference/non-reference mapping rate
is similar for transcript- and genome-based simulations
(Additional file 1: Table S2). The allelic ratios were
highly correlated (rho =0.96 for SNPs and 0.95 for indels;
Figures 2A and B, and 3A and B) and 97.00% of SNPs and
98.60% of indels that are biased in transcriptome-based
simulations were also biased in genome-based data. These
observations suggest that transcript structure and split
reads in RNA-seq have a relatively minor effect on allelic
mapping bias, and that even genome sequence-based
estimates of biased loci are generally valid for RNA-seq.
Next, we tested the effect of single-end versus paired-

end reads - the latter being the standard in modern
RNA-seq. We simulated paired-end 50 bp reads with a
ntifications. (A) Mapping bias in SNPs and indels of 1000 Genomes
ome sequence and aligned with BWA. (B) The impact of filtering for



Table 1 Simulated bias in variant sites that are polymorphic
with MAF >1% in Europeans, from single-end read
simulations based on genome sequence and aligned
with BWA

SNPs Indels Total

(90.84% of total) (9.16% of total)

Variants (n) 8,650,740 872,262 9,523,002

Variants
with >0% bias

1,822,445 550,423 2,372,868

(21.06%) (63.10%) (24.91%)

Variants
with >5% bias

1,088,730 397,399 1,486,129

(12.58% of SNPs) (45.56% of indels) (15.60% of total)
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fixed insert size for all coding variants that overlap the
most common transcript across tissues as before, mapped
the reads with BWA, and compared the results with the
corresponding single-end results (Additional file 1: Table
S2). As expected, we found fewer biased SNPs (5.15% in
paired-end vs. 8.45% in single-end) and indels (43.03% in
paired-end vs. 44.83% in single-end). While the overall
correlation of the allelic ratios (paired-end vs. single-end)
is high (rho =0.78 for SNPs and 0.95 for indels; Figure 2A
and B), paired-end reads clearly reduce mapping bias for
SNPs, but much less so for indels (Figure 3C and D).
However, the high proportion of biased variants in paired-
end data that are also biased in single-end data (92.5% for
SNPs and 97.30% of indels) indicates that while single-end
simulations are sometimes overly conservative for paired-
end data, they find nearly all of the variants that would be
biased in paired-end data.

Effect of mapping bias in gene quantification and eQTL
mapping
In order to investigate if the allelic mapping bias drives
biased quantification of expression levels of exons and
Figure 2 Correlation of mapping bias with different alignment metho
ratio for SNPs (A) and indels (B) in simulations with different mappers and
subsequently false eQTL discoveries, we combined the
information from simulations with RNA-seq data from
lymphoblastoid cells lines of 185 individuals from the
Gencord project [20,21] (see Methods). In the standard
quantification of exon expression levels, we quantified
78,595 exons (>0 reads in >90% of individuals). In this
study, to analyze the effect of mapping bias in exon
quantification and eQTL discovery, we removed all the
RNA-seq reads that are mapped to biased start sites as
indicated by our simulations, from each individual re-
gardless of the genotype. We chose to use results from
the single-end 50 bp genome-based mapped with BWA
simulations, since they have fewer assumptions of tran-
script structure or insert size than the other simulations,
and especially compared to the paired-end results these
represent the worst-case scenario. After filtering away
an average of 750,414 reads (85.40% filtered because of
SNPs and 14.60% because of indels) per individual with
start sites matching the 63.2 M start sites that were
biased in our simulations, we quantified 78,281 exons
(Additional file 1: Table S3), with an average of 6,408
exons per individual with at least one read removed. The
quantifications between non-filtered and filtered data were
extremely highly correlated (mean rho =0.998; Figure 1B),
with the genes with low coverage in RNA-seq quantifica-
tion having a proportionally similar loss of coverage as
high coverage genes (Additional file 1: Figure S1). These
results suggest that filtering reads with potential mapping
bias hardly affects the overall pattern of exon quantifica-
tion and does not significantly reduce the resolution or
coverage of RNA-seq data.
Next, we examined if this change in quantifications

due to removal of putative mapping bias affects eQTL
discovery. In the standard, non-filtered dataset, we dis-
covered 3,372 eQTL genes at 10% FDR. When using
exon quantifications without reads in potentially biased
ds and read types. (A, B) Spearman correlation of reference allele
different read building strategies.



Figure 3 Comparison of allelic ratios with different read types. Reference allele ratio obtained from simulated reads over SNPs (A, C) and
indels (B, D) comparing genome versus transcriptome-based reads (A, B) in single-end 50 bp reads mapped with the GEM mapper, and comparing
single- versus paired-end reads (C, D) in genome-based 50 bp reads mapped with BWA. The dotted lines denote 5% difference of the ratio for
reference/non-reference allele. The color scale from dark blue to light blue denote the density of the points.
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start sites we observe 3,323 eQTL genes with the same P
value threshold. These two eQTL sets are highly over-
lapping, both at the gene level, with 3,253 common
genes (Table 2) and at the exon level, with 95.35% of
non-filtered significant exons also called significant in
the filtered set (Additional file 1: Table S4). In this paper,
we call the eQTLs lost, gained, and common according
Table 2 Number of eQTL genes detected before and after
filtering for biased reads estimated from single-end read
simulations based on genome sequence and aligned with
BWA

Non-filtered data

eQTL
genes

Genes without
eQTL

Total

Filtered
data

eQTL genes 3,253 70 3,323

Genes without
eQTL

119 8,800 8,919

Total 3,372 8,870 12,242
to whether the gene with an eQTL in the original dataset
was significant only before (lost) or only after (gained)
filtering putatively biased reads or in both analyses
(common). In 9.24% of lost eQTL genes or in 0.32% of
all eQTL genes the log P value dropped by >20 after fil-
tering biased reads, suggesting that these associations
were clear false positives driven by allelic mapping bias
(Figure 4A), and we list these genes (Additional file 1:
Table S7). The P values before and after filtering were
highly correlated (Figure 4A), but a sizeable fraction of
genes had a log P value difference > =1 (49.57% of lost,
2.52% of common, and 14.28% of gained eQTL genes).
To analyze further the differences in eQTL signals that

were lost or gained when reads with putative mapping
bias were removed, we first analyzed the number of sig-
nificant exons per gene. We observed that most of the lost
eQTL genes (92.4%) were associations to only a single sig-
nificant exon (Figure 4B, Additional file 1: Figure S2). In
contrast, eQTLs that were discovered only in filtered data,



Figure 4 Effect of mapping bias on eQTL discovery. (A) Comparison of original and filtered P values (rho =0.92, P value <2.2e-16) shows that
for the vast majority of the genes, the P values after filtering potentially biased reads are highly consistent with P values without filtering. Colors
denote whether the gene with an eQTL in the original dataset was significant only before (lost) or only after (gained) filtering putatively biased
reads or in both analyses (common). The dotted lines denote 10% FDR significance thresholds. (B) The number of exons per gene with significant
associations as a function of the total number of quantified exons in the original, non-filtered dataset. (C) Proportion of the best-associated exon per
gene with genetic variants (see also Additional file 1: Table S5). (D) Proportion of biased variants in six different categories based on the single-end
genome based mapped with BWA simulated reads. Matched eQTL null is a random sample of variants matched to the distance from TSS of eQTLs.
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typically just above the P value threshold, had a high num-
ber of quantified exons (Additional file 1: Figure S3). Fur-
thermore, we observed that exons in which the eQTL
signal was lost by filtering were enriched for SNPs and
indels within the exon compared to shared or gained
exons (80.67% with variants in lost versus 58.57% in
gained exons; Figure 4C; Additional file 1: Tables S5, S6;
Fisher’s exact test P value =0.001). These results suggest
that the cases where the eQTL association was lost by fil-
tering are indeed enriched for false associations driven by
mapping bias.
If an eQTL is driven by mapping bias, the biased vari-

ant itself (or strongly linked variants) is likely to show
up as the most significant eQTL variant. If such false
associations were widespread, eQTL variants would be
expected to have higher simulated mapping bias. Thus,
we investigated the simulated mapping bias of the most
significant eQTL variant of all original eQTL genes,
without filtering. Of the eQTL SNPs, 11.53% are biased
(>5% difference in mapping of reference and non-reference
reads), which is similar to the 11.87% of biased random
SNPs that have been matched for distance from TSS
(Mann-Whitney P value =0.2 for comparison of the full
distributions of simulated bias, or Fisher’s exact test
P value =0.6 for bias being >5% or <5%; Figure 4D).
This supports the general observation suggesting that
mapping bias is not a major driver of eQTL associations.

Discussion
In this paper, we have addressed a potentially significant
drawback of RNA-seq eQTL studies, with the reassuring
result that eQTL detection is rarely affected by allelic
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mapping bias. While our simulations indicate that a sub-
stantial proportion of all genetic variants can give rise to
mapping bias, such loci are less common in coding re-
gions and thus the proportion of putatively biased RNA-
seq reads is relatively low. The RNA-seq quantifications
based on a much larger sequence target than probe se-
quences of arrays renders robustness against mapping
bias, which is another important advantage over expres-
sion arrays [10].
However, the robustness of eQTL results to allelic

mapping bias does not imply the same for all RNA-seq
analyses. While the quantification of exons is robust
against mapping biases, transcript quantifications might
be affected, depending on the quantification method.
Moreover, analysis of allelic effects is severely compro-
mised by unequal mapping of reads due to the analyzed
heterozygous variant itself or other flanking variants in
the reads [8]. Our catalog of potentially biased variants
can be used to remove suspicious sites from allelic ex-
pression [22] or binding analysis [23] as well. Further-
more, we have addressed only eQTLs for coding genes,
but for example miRNA quantifications are based on
shorter reads and repetitive targets. This makes these
studies more vulnerable for mapping biases, necessitat-
ing more extensive approaches to account for mapping
bias [22].
Our approach, with filtering potentially biased start

sites and variants detected from the simulations, can be
easily applied to other studies, and we provide the re-
sults of our simulations to enable this. These results are
similar for different alignment methods, genome versus
transcriptome models, and single- versus paired-end
reads, suggesting that exact simulations according the
precise RNA-seq assay used in each study is not always
necessary. Our single-end based analyses also apply for
ChIP-seq analyses [15,23] that usually rely on single-
end reads. Our approach is intentionally stringent in
using haplotypes of all variants with >1% frequency in
equal proportions in the simulated read pool, regardless
of their population frequency. However, not simulating
all possible transcripts, not simulating sequencing er-
rors, and errors in the indel calling of 1000 Genomes
Phase 1 data may lead to some underestimation of the
bias. Altogether, finding only a handful of eQTLs likely
driven by mapping bias suggests that they are unlikely
to be widespread. An alternative method to eliminate
mapping biases is alignment to personalized references
[12]. However, this is not only computationally challen-
ging for large population-based RNA-seq studies but
will take into account only genotyped variants, which is
almost always far from a comprehensive representation
of all variants, especially indels. Thus, a filtering strategy
based on all known common variants, as in this study, is
likely to be more comprehensive.
Conclusions
Our results indicate that allelic mapping bias is not a
major confounder in gene and exon quantifications
based on RNA sequencing data, nor a major source of
false positive eQTL findings. However, the possibility
of false associations should be taken into account espe-
cially when analyzing individual loci. Furthermore, as
sample sizes increase, even very slight biases can give
rise to significant associations. Thus, estimating the ef-
fects of allelic mapping bias and accounting for that in
analyses is one of the important steps towards efficient
use of RNA-sequencing technology to measure the tran-
scriptome and its variation.

Methods
We first estimated allelic read-mapping bias by simulating
RNA-seq reads with and without variant alleles based on
the genome sequence. We analyzed 8,650,740 SNP and
872,262 indel variants from the European samples (CEU,
GBR, TSI, FIN, IBS) in 1000 Genomes [16] Phase 1 data
with minor allele frequency >1%. We created the potential
50 bp single-end reads overlapping these variants in all
the observed haplotype combinations, yielding a total of
1,204,281,163 reads. We did not simulate sequencing er-
rors due to the extremely large number of reads that
would result from this. For simulating reads derived from
the transcriptome rather than genome, we selected the
most common transcript for each gene from the pilot
phase dataset of the GTEx project [24] across all the tis-
sues. Next, for all of these transcripts we identified all the
variants that fully overlap its exons and we created all the
possible 50 bp reads taking into account all the observed
haplotype combinations and the annotated exon structure
of the transcript. Additionally, we also simulated 50 bp
paired-end reads with an insert size of 60 nucleotides
(median insert size in Gencord Project [20,21]) based
on the genome sequence, using the same subset of vari-
ants as in the transcript analysis.
The simulated reads were mapped to the hg19 refer-

ence genome [25] either with BWA [17] (single-end and
paired-end genome-based reads) or with GEM [18] (sin-
gle-end genome and transcriptome reads) and identified
the read start positions where reads carrying different al-
leles (including reads with linked flanking variants) did
not map equally.
To examine if quantification of expression levels of

exons and eQTL discoveries are driven by mapping
bias we incorporated the information obtained by our
simulations with RNA-seq data from lymphoblastoid
cells lines of 185 individuals from the Gencord project
[20,21]. In the original analysis of this dataset, 49 bp
paired-end reads (median 39 million per individual) were
mapped to hg19 reference genome [25] with BWA [17].
Autosomal exons were quantified from raw read counts,
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and normalized by the total number of reads that mapped
to exons and four technical covariates (for details, see
Gutierrez-Arcelus et al. [21]) (Additional file 1: Table S3).
These quantifications and genotype data from 5.6 M SNPs
(Omni 2.5 M SNP array imputed to 1000 Genomes Phase
1) were used to map cis-eQTLs by Spearman rank correl-
ation, with FDR adjusted to 10% by permutations. In this
study, to analyze the effect of mapping bias in exon quan-
tifications and eQTL discovery, we removed all the RNA-
seq reads that are mapped to biased unique start sites as
indicated by our simulations, from each individual regard-
less of the genotype. We then re-ran the analyses on the
filtered data, using the same quantification, normalization,
eQTL mapping procedure, and eQTL permutation thresh-
old as before.

Additional file

Additional file 1: Table S1. Simulated bias in variant sites that are
polymorphic with MAF > 1% in Europeans by using single-end reads
simulated based on the genome sequence and aligned with the GEM
mapper. Table S2. Simulated bias in a subset of coding variant sites that
are polymorphic with MAF > 1% in Europeans by using different read
building strategies and aligners. Table S3. Effect of filtering on mapped
reads and expression quantification. Table S4. Overlap of eQTL datasets
(Non-filtered and filtered) in the exon level. Table S5. Numbers and
percentages of variants within the best eQTL exons in the lost, gained
and common eQTL genes. Table S6. Number of exons with and without
variants in common, lost, and gained eQTL genes. Table S7. Genes that
were highly significant before filtering biased reads with a difference
in the -log10 of P value before and after filtering >20. Figure S1.
Proportional loss of coverage in filtering biased reads for each gene,
compared to the log10 of the number of reads per gene in the original
data. Figure S2. Distribution of the number of exons that passed the
P value threshold (significant exons) in eQTL genes in the non-filtered eQTL
dataset for (a) lost eQTL genes, (b) gained eQTL genes, and (c) common
eQTL genes. Figure S3. Distribution of the number of quantified exons in
gained eQTL genes and all quantified genes (Mann-Whitney P value < 0.004).
The higher the number of exons, the easier it is for a gene to pass
the P value threshold and be characterized as eQTL gene.
Supplementary data. The simulated data for all the alignment
strategies used in this paper are freely and publicly available on our
ftp server (ftp://jungle.unige.ch/Allelic_map_bias/).
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