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Population-Scale Sequencing Data Enable
Precise Estimates of Y-STR Mutation Rates

Thomas Willems,1,2,3 Melissa Gymrek,1,3,4,5 G. David Poznik,6,7 Chris Tyler-Smith,8

The 1000 Genomes Project Chromosome Y Group, and Yaniv Erlich1,3,9,10,*

Short tandem repeats (STRs) are mutation-prone loci that span nearly 1% of the human genome. Previous studies have estimated the

mutation rates of highly polymorphic STRs by using capillary electrophoresis and pedigree-based designs. Although this work has pro-

vided insights into the mutational dynamics of highly mutable STRs, the mutation rates of most others remain unknown. Here, we har-

nessed whole-genome sequencing data to estimate the mutation rates of Y chromosome STRs (Y-STRs) with 2–6 bp repeat units that are

accessible to Illumina sequencing. We genotyped 4,500 Y-STRs by using data from the 1000 Genomes Project and the Simons Genome

Diversity Project. Next, we developed MUTEA, an algorithm that infers STR mutation rates from population-scale data by using a high-

resolution SNP-based phylogeny. After extensive intrinsic and extrinsic validations, we harnessed MUTEA to derive mutation-rate esti-

mates for 702 polymorphic STRs by tracing each locus over 222,000meioses, resulting in the largest collection of Y-STRmutation rates to

date. Using our estimates, we identified determinants of STRmutation rates and built amodel to predict rates for STRs across the genome.

These predictions indicate that the load of de novo STR mutations is at least 75 mutations per generation, rivaling the load of all other

known variant types. Finally, we identified Y-STRs with potential applications in forensics and genetic genealogy, assessed the ability to

differentiate between the Y chromosomes of father-son pairs, and imputed Y-STR genotypes.
Introduction

Mutations provide the fuel for evolutionary processes.

The rates at which new mutations arise play a central

role in a range of genetic applications, including dating

phylogenetic events,1 informing disease studies,2 and eval-

uating forensic evidence.3 The advent of high-throughput

sequencing has enabled genome-wide measurements of

the number of de novomutations via a broad range of stra-

tegies. A host of studies have evaluated the mutation rates

of nearly every type of genetic variation, ranging from

SNPs4–7 and short indels8 to large structural variations.9

These sequencing studies have concluded that approxi-

mately 50–100 de novo mutations, most of which are

point mutations, arise each generation. However, these

studies have largely overlooked the contribution of short

tandem repeats (STRs).

STRs are one of themost abundant types of repeats in the

human genome. They consist of a repeating 2–6 bp motif

and span a median of 25 bp. Approximately 700,000 STR

loci exist in the human genome, and in aggregate, they

occupy ~1% of its total length. STR variations have been

implicated in more than 30 hereditary disorders,10 and

emerging lines of evidence have highlighted their involve-

ment in complex traits in both humans11–13 and model

organisms.14–16 The repetitive nature of STRs causes

error-prone DNA-polymerase replication events that can

insert or delete copies of the repeat motif in subsequent
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generations, leading to markedly elevated mutation

rates.17,18

Previous studies estimated the rates and patterns of

de novo STR mutations by using capillary electrophoresis

genotyping of specialized sets of markers, such as the

Marshfield panel, CODIS (Combined DNA Index System)

markers, or specific Y chromosome STRs (Y-STRs). These

studies have estimated that the average STR mutation

rate per locus is 10�3 to 10�4 mutations per generation

(mpg).17,19–22 However, most STRs characterized in these

studies were chosen for their relatively high levels of diver-

sity in the population. As such, it is not clear whether their

mutation rates and patterns reflect those of most STRs in

the genome. Furthermore, given that most previously

studied STRs have tri- and tetranucleotide motifs, the field

lacks robust mutation-rate estimates for other motif

lengths, specifically those of dinucleotides, the most prev-

alent type of STR. Finally, capillary electrophoresis has

relatively low throughput, and most STRs were never

genotyped in these studies, leaving the specific mutation

rates of most STRs unknown.

The rapid advancement of next-generation sequencing

technologies has provided the opportunity to genotype

STRs beyond those on existing panels and to do so on a

larger scale. Coupled with vast improvements in the depth,

read length, and quality of whole-genome sequencing

(WGS) datasets, algorithmic progress in STR genotyping

tools has made it possible to robustly call these markers
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from high-throughput data.23–25 In our previous study, we

found that 90% of the STRs in the genome are accessible to

Illumina technology, and we showed that hemizygous

STRs can be called with very high accuracy.26

Here, we leveraged population-scale high-throughput

sequencing data to systematically estimate the mutation

rates and analyze the mutational dynamics of STRs across

the Y chromosome. To gain power, we used two indepen-

dent datasets, the 1000 Genomes Project27 and the Simons

Genome Diversity Project (SGDP).28 The Y chromosomes

in these datasets confer rich genealogical information,

enabling the analysis of complex STR mutation models

without the need for familial information. To leverage

this genealogical information, we developed MUTEA

(Measuring Mutation Rates using Trees and Error Aware-

ness), an algorithm that infers the mutational dynamics

along the Y chromosome branches. After validating

MUTEA via intrinsic and extrinsic tests, we scanned

4,500 Y-STRs and used the algorithm to infer the mutation

rates of 702 polymorphic Y-STRs. To the best of our knowl-

edge, this is the largest collection of Y-STR mutation rates

to date. We show the value of this large collection of muta-

tion rates by uncovering the sequence determinants of

mutability, predicting the genetic load of de novo STR mu-

tations across the genome, and exploring a series of

forensic applications.
Material and Methods

Sequencing Datasets
We analyzed 179 male SGDP samples from widely dispersed

populations across Africa, Asia, and the Americas. The SGDP

sequenced these samples to over 303 coverage by using a PCR-

free library-preparation protocol and 100 bp paired-end Illumina

reads. Given that our previous results demonstrated that this pro-

tocol substantially reduces the rate of PCR stutter at STR loci,29 the

SGDP cohort provides a high-quality dataset for calling Y-STRs.We

also analyzed 1,244 unrelated male samples from phase 3 of the

1000 Genomes Project. These samples are from 26 globally diverse

populations and were sequenced to an average autosomal

coverage of 73 with 75–100 bp paired-end Illumina reads.
Y-SNP Phylogeny
To construct the SGDP Y chromosome haplotype tree, we down-

loaded VCF files containing the Y-SNP calls generated by the

SGDP analysis group. Because many of these SNPs lie in pseudoau-

tosomal regions or regions with low mappability, we applied a

series of filters to reduce the frequency of genotyping errors. Using

VCFtools,30 we first removed loci for which more than 10% of in-

dividuals were heterozygous. For the remaining SNPs, we removed

individual SNP calls that were heterozygous, had fewer than seven

supporting reads, or had more than 10% of reads supporting an

uncalled allele. Lastly, we discarded SNP loci if fewer than 150 sam-

ples met these criteria or if more than 10% of reads had zero map-

ping quality. Overall, we obtained nearly 39,000 high-quality

polymorphic SNPs.

We then used the high-quality SNPs to build the Y chromosome

phylogenetic tree with RAxML31 and the options -m ASC_
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GTRGAMMA -f d --asc-corr lewis. The SGDP samples included

three representatives of haplogroup A1b1 and no members of

the more basal clades (A00, A0, and A1a), so we used Dendro-

scope32 to root the phylogeny along the branch marked by the

M42 and M94 mutations, markers associated with the split be-

tween A1b1 and megahaplogroup BT. For the 1000 Genomes

phase 3 dataset, we used a RAxML-generated phylogeny that was

built by the 1000Y analysis group.33

Although the maximum-likelihood phylogeny generated for

each dataset has numerical branch lengths, these lengths are not

scaled in units of generations, as required by our method. We

therefore tested two scaling approaches. First, we selected the fac-

tor that most closely equated the total number of generations in

each phylogeny to the corresponding value on the basis of pub-

lished Y-SNP mutation rates. To do so, we used a recently pub-

lished Y-SNP mutation rate of 3 3 10�8 mutations per base per

generation34,35 and the numbers of called SNPs and called sites

in each SNP dataset. As an alternative method, we scaled the trees

by using mutation-rate estimates for 15 loci in the Y Chromosome

Haplotype Reference Database (YHRD), a large compendium of in-

dividual Y-STR mutational studies (individually cited therein).36

We chose to use these loci for calibration because their muta-

tion-rate estimates are each based on more than 7,000 father-son

pairs per locus and should therefore be relatively precise. For the

1000 Genomes data, we used the available PowerPlex capillary

data for each locus, assumed error-free genotypes, scaled the phy-

logeny by using a range of factors, and used MUTEA (see below) to

estimate the set of mutation rates for each scaling factor. The

choice of scaling factor had essentially no effect on the correlation

with the YHRD estimates, resulting in an R2 of 0.89 across all

tested factors (Figure S1). However, the total squared error between

the estimates was minimized for a factor of ~2,800, which we

therefore selected as the optimal scaling. For the SGDP data, we

performed an analogous analysis by using HipSTR genotypes

(see below) for 9 of these 15 loci, again resulting in a uniform R2

of 0.91 and an optimal scaling factor of ~3,200 (Figure S1).

The resulting scaling factors were remarkably concordant be-

tween the methods, although the factors determined by the

Y-SNP method were ~25% greater. However, to maximize the

concordance with pedigree estimates, we used the secondmethod.

After scaling the branches, we found that the approximate total

lengths of the SGDP and 1000 Genomes phylogenies were

60,000 and 160,000 meioses, respectively.
Defining and Identifying Y-STRs
To identify Y-STRs, we used a quantitative procedure developed in

our previous work.26 In brief, this procedure uses Tandem Repeats

Finder (TRF) to score each genomic sequence according to its pu-

rity, length, and nucleotide composition.37 It then uses extensive

simulations of random nucleotide sequences to determine a

scoring threshold that distinguishes random DNA from DNA

that is truly repetitive and then selects regions with scores above

this threshold as STRs. Our previous results suggested that this

approach has less than a 1.4% probability of omitting a polymor-

phic STR and has a false-positive rate of approximately 1%.

We applied this procedure to the Y chromosome sequence of the

hg19 reference genome (UCSC Genome Browser). Because TRF

occasionally identifies regions that overlap, we ensured that every

locus had a unique STR annotation by using the following steps.

(1) We merged two STR regions if the higher-scoring one con-

tained 85% of the bases in the union of the regions. (2) We also
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merged overlapping entries that failed this criterion but had the

same period. For example, adjacent [GATA]10 and [TACA]8 entries

were merged into one STR. (3) Because we intended to use

sequencing alignments relative to either hg19 or GRCh38 coordi-

nates, we removed hg19 STR regions that failed to liftOver38 to the

GRCh38 assembly or were lifted from the Y chromosome to the

X chromosome.

We also added coordinates for Y-STR loci whose mutation rates

had been characterized in prior studies.21,39 For these markers,

we used the published set of primer sequences and the isPCR

tool38 to map the primers to hg19 coordinates. We then ran

TRF on each region and pinpointed the coordinates by using the

published repeat structure. Lastly, we applied TRF to additional re-

gions previously published as part of comprehensive Y-STR maps

to obtain coordinates for labeled markers whose mutation rates

had not been previously characterized.40 In total, we added 261

annotated Y-STRs, ~190 of which had mutation-rate estimates

from prior studies. The complete Y-STR reference is available

for download in both hg19 and GRCh38 coordinates (Web

Resources).
Y-STR Call Set and Its Accuracy
We downloaded BWA-MEM41 alignments for the SGDP samples

from the project website and used SAMtools42 to extract and

merge the Y chromosome alignments into a single BAM file. STR

genotypes were then generated with HipSTR, an improved version

of lobSTR, an STR caller for Illumina data we developed in our pre-

vious studies.23

HipSTR provides additional capabilities over lobSTR because it

uses a specialized hidden Markov model (HMM) to account for

PCR stutter artifacts. In brief, to genotype an STR, HipSTR creates

a list of candidate alleles from the alignments observed in the pop-

ulation. For each sample, it then realigns every read to each puta-

tive allele by using the HMM, selects the allele with the highest

total likelihood as the genotype, and returns each read’s alignment

in relation to this genotype. This haplotype-based approach pro-

duces highly accurate STR genotypes and eliminates many read

misalignments that can occur if reads are aligned individually or

are only aligned to the reference genome. To genotype each STR

region in the Y-STR reference described above, we ran HipSTR by

using the merged BAMs and the following options: --min-reads

25 --haploid-chrs chrY --hide-allreads. Similarly, we downloaded

BWA-MEM alignments from the 1000 Genomes phase 3 data

release. Because these alignments were relative to the GRCh38

assembly, we ran HipSTR by using the corresponding GRCh38

STR regions and the options --min-reads 100 --haploid-chrs

chrY --hide-allreads.

We employed several strategies to enhance the quality of

the SGDP STR call set. (1) To avoid errors introduced by neigh-

boring repeats, we omitted genotyped loci that overlapped

one another or multiple STR regions. (2) We discarded loci if

more than 5% of samples’ genotypes had a non-integer number

of repeats, such as a 3 bp expansion in an STR with a tetranucleo-

tide motif. These types of events occur quite rarely and usually

reflect genotyping errors rather than genuine STR polymor-

phisms.23 (3) We removed Y-STRs that were called in at least

two SGDP females because they are likely to have high X chromo-

some or autosome homology. (4) We omitted sites if more than

15% of reads had a stutter artifact or more than 7.5% of reads

had an indel in the sequence flanking the STR. These HipSTR-

reported statistics typically indicate that the locus is not well
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captured by HipSTR’s genotyping model and can arise if dupli-

cated sites map to the same location in the reference genome.

(5) For the remaining loci, we discarded unreliable calls on a

per-sample basis if more than 10% of an individual’s reads had

an indel in the flank sequence. (6) Finally, we removed loci in

which fewer than 100 samples had genotype posteriors greater

than 66%, because these loci had too few samples for accurate

inference.

To filter the 1000Genomes call set, we first removed loci that did

not pass the SGDP dataset filters. We then applied a set of filters

identical to those described above except that we only removed

loci withmore than 15 genotyped females and did not apply a cut-

off for stutter frequency. These alterations account for the 1000

Genomes dataset’s larger sample size and use of PCR amplification

during library preparation.

Importantly, we found that both the SGDP and 1000 Genomes

HipSTR call sets were of high quality. We compared our STR geno-

types to capillary-electrophoresis datasets available for the same

samples. For the SGDP samples, we observed a 99.7% concordance

rate when we compared the HipSTR and capillary results for 3,300

calls at 48 Y-STRs.43 For the 1000 Genomes samples, a comparison

of 4,050 calls at 15 loci in the PowerPlex Y23 panel resulted in a

97.5% concordance rate.44
MUTEA: Theory
Previously developed methods estimate STR mutation rates from

population data by comparing the mean squared difference in

allele lengths between samples to the time to themost recent com-

mon ancestor (TMRCA).45,46 However, these methods generally

assume simple mutation models, can be sensitive to fluctuations

in haplogroup size,47 and require exact error-free genotypes. We

therefore sought to develop an algorithm that can address these

issues by leveraging detailed Y-SNP phylogenies.

Figure 1 outlines the steps underlying MUTEA. Under a naive

setting without genotyping error, MUTEA uses Felsenstein’s prun-

ing algorithm48 and numerical optimization to evaluate and

improve the likelihood of a mutation model until convergence.

However, because of the error-prone and low-coverage nature of

WGS-based STR call sets, using these genotypes would result in

vastly inflated mutation-rate estimates. To avoid these biases,

MUTEA learns a locus-specific error model and uses this error

model to compute genotype posteriors. It then uses these poste-

riors rather than fixed genotypes during the process of optimizing

the mutation model to obtain robust estimates. In addition, for

STR mutations, MUTEA uses a flexible computational framework

that includes length constraints and allows for multi-step muta-

tions. We describe each step below.
Likelihood of a Mutation Model
Weused Felsenstein’s pruning algorithm to evaluate the likelihood

of an STRmutation model. LetM denote the STRmutationmodel,

D denote the dataset containing STR genotype likelihoods, and T

denote the Y chromosome phylogeny rooted at node R. The likeli-

hood of the data is

PðD j M;TÞ ¼
X

r
PðR ¼ r;D j M;TÞ

¼
X

r
PðR ¼ r j M;TÞPðD j R ¼ r;M;TÞ:

Let DNi
denote the genotype likelihoods of all nodes that are in

the subtree rooted at node Ni. If node Ni has genotype g; the con-

ditional probability of the data in its subtree is given by
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Figure 1. Method for Estimating Y-STR
Mutation Rates
Schematic of our procedure for estimating
Y-STR mutation rates. The method first ge-
notypes Y-SNPs (step 1) and uses these calls
to build a single Y-SNP phylogeny (step 2).
This phylogeny provides the evolutionary
context required for inferring Y-STR muta-
tional dynamics; samples in the cohort
occupy the leaves of the tree, and all other
nodes represent unobserved ancestors.
Steps 3–6 are then run on each Y-STR indi-
vidually. After an STR genotyping tool
is used for determining each sample’s
maximum-likelihood genotype and the
number of repeats in each read (step 3),
an EM algorithm analyzes all of these
repeat counts to learn a stutter model
(step 4). In combination with the read-
level repeat counts, this model is used for
computing each sample’s genotype poste-
riors (step 5). After a mutation model is
randomly initialized, Felsenstein’s pruning
algorithm and numerical optimization are
used to repeatedly evaluate and improve
the likelihood of the model until conver-
gence. The mutation rate in the resulting
model provides the maximum-likelihood
estimate.
P
�
DNi

j Ni ¼ g;M;T
� ¼Y

Cj ˛ childðNiÞ

X
b ˛ alleles

P
�
Cj ¼ b;DCj

j Ni ¼ g;M;T
�

¼
Y

Cj ˛ childðNiÞ

X
b ˛ alleles

P
�
Cj ¼ b j Ni ¼ g;M;T

�
3 P

�
DCj

j Cj ¼ b;M;T
�
:

While descending the phylogeny, this recursive relation applies

until a node with no children is encountered. These leaf nodes

represent sequenced individuals, and the conditional probability

of the data is given by the individuals’ genotype likelihoods.

Therefore, the likelihood of a mutation model can be calculated

with a post-order tree traversal. First, the algorithm computes

the genotype likelihoods at each leaf node. It then progresses to

each internal node and calculates the conditional probability of

the data for each potential genotype after computing its descen-

dants’ probabilities. Finally, upon reaching the root node, the total

data likelihood is computed with the root node’s conditional prob-

abilities and a uniform prior for the root node’s genotype.

In practice, we compute the total log-likelihood to avoid

numerical underflow issues. Because normalizing the genotype

likelihoods of each sample does not affect the relative model likeli-

hoods, we calculated genotype posteriors by using a uniform prior

and used them throughout our analysis.
STR Mutation Model
Tomodel STRmutations, we used a generalized stepwise mutation

model with a length constraint. EachmutationmodelM is charac-

terized by three parameters: a per-generation mutation rate m, a

geometric step-size distribution with parameter rM, and b, a

spring-like length constraint that causes alleles to mutate back

toward the central allele. In this framework, the central allele is as-

signed a value of 0, and nonzero allele values indicate the number
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of repeats from this reference point. Given a starting allele at
observed at time t, the probability of observing a particular allele

k in the following generation is

pðatþ1 ¼ k j atÞ ¼
8<
:

1� m; k ¼ at

m fi rMð1� rmÞk�at�1
; k > at

m fd rMð1� rmÞat�k�1
; k < at

;

where the fraction of mutations increasing and decreasing the size

of the STR is fi ¼ 1� b rMat=2 and fd ¼ 1� fi, respectively; fi values

greater than 1 or less than 0were clipped and set to 1 and 0, respec-

tively. These two model features act as spring-like length con-

straints that attract alleles back toward the central allele. To avoid

biologically implausible models, we constrained b to have non-

negative values, where b ¼ 0 reduces to a traditional generalized

stepwise mutation model, and increasingly positive values of b

model STRs with stronger tendencies to mutate back toward the

central allele. Values of rM close to 1 primarily restrict models to

single-step mutations, whereas smaller values of this parameter

enable frequent multi-step mutations.

Computing Likelihoods of STR Genotypes
To calculate the likelihood of the data D observed in the leaf

nodes, we needed to account for STR genotyping errors. These

errors are mainly caused by PCR stutter artifacts that insert or

delete STR units in the observed sequencing reads. We therefore

developed a method to learn each STR’s distinctive stutter-noise

profile.

Let Qx denote the stutter model for STR locus x. Qx is parameter-

ized by the frequency of each STR allele (Fi), the probability that

stutter adds (u) or removes (d) repeats from the true allele in an

observed read, and a geometric distribution with parameter rs

that controls the size of the stutter-induced changes. Given a stut-

ter model and a set of observed reads (R), the posterior probability

of each individual’s haploid genotype is
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Pðgi ¼ j j R;QxÞfFj
Ynreads;i

k¼1

8<
:

1� u� d; rk;i ¼ sj
ursð1� rsÞrk;i�sj�1

; rk;i > sj
drsð1� rsÞsj�rk;i�1

; rk;i < sj

;

where gi denotes the genotype of the i
th individual, nreads;i denotes

the number of reads for the ith individual, rk; i denotes the number

of repeats observed in the kth read for the ith individual, and sj de-

notes the number of repeats in the jth allele. Analogous to the step-

size parameter in the mutation model, small values of rs allow for

frequent multi-step stutter artifacts, whereas values near 1 restrict

artifacts to single-step changes.

We implemented an expectation-maximization (EM) frame-

work to learn these model parameters.49 The E step computes

the genotype posteriors for every individual given the observed

reads and the current stutter-model parameters. The M step then

uses these posterior probabilities to update the stutter-model

parameters as follows:

utþ1 ¼ 1

Q

XN

i¼1

XA

j¼1
P
�
gi ¼ j j R;Qt

�Xnreads;i

k¼1
I
�
rk;i > sj

�

dtþ1 ¼ 1

Q

XN

i¼1

XA

j¼1
P
�
gi ¼ j j R;Qt

�Xnreads;i

k¼1
I
�
rk;i < sj

�

rtþ1
s ¼

XN

i¼1

XA

j¼1
P
�
gi ¼ j j R;Qt

�Xnreads;i

k¼1
I
�
rk;issj

�
XN

i¼1

XA

j¼1
P
�
gi ¼ j j R;Qt

�Xnreads;i

k¼1
j rk;i � sj j

Ftþ1
j ¼ 1

N

XN

i¼1
P
�
gi ¼ j j R;Qt

�
:

Here,N denotes the number of samples,A denotes the number of

putative alleles,Q denotes the number of sequencing reads, and I is

the indicator function. Because rS is the parameter of a geometric

step-size distribution, the M step updates its value by using the in-

verse of themeanweighted step size for reads with nonzero stutter.

Locally misaligned reads can also introduce genotyping errors if

they cause a miscalculation in a read’s repeat length. However,

these errors introduce artifacts that are relatively similar to those

caused by PCR stutter. As a result, the EM procedure learns stutter

models that correct for the combined frequencies of PCR stutter

and misalignment, resulting in robust genotype posteriors for

downstream analyses.
MUTEA Computation
Given genotype likelihoods for an STR of interest, we used a

maximum-likelihood approach to estimate the underlying muta-

tion model. Our approach first estimates the central allele of the

mutation model by computing the median observed STR length

and then normalizes all genotypes in relation to this reference

point. Next, it randomly selects mutation-model parameters m, b,

and rM , subject to the constraint that they lie within the ranges

of 10�5–0.05, 0–0.75, and 0.5–1.0, respectively. Using these

bounds, the Nelder-Mead optimization algorithm,50 and the out-

lined method for computing each model’s likelihood, we itera-

tively update the mutation-model parameters until the likelihood

converges. After repeating this procedure by using three different

random initializations to increase the probability of discovering a

global optimum, our algorithm selects the optimized set of param-

eters with the greatest total likelihood.

For each SGDP and 100 Genomes STR that passed the requisite

quality-control filters, we first used the EM algorithm to learn a
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model of PCR stutter. To run this algorithm, we obtained the

STR size observed in each read from the MALLREADS VCF

field. HipSTR uses this field to report the maximum-likelihood

STR size observed in each read that spans its sample’s most prob-

able haplotype. We then used the learned stutter model in

conjunction with a uniform prior to compute the genotype poste-

riors for each sample with a HipSTR quality score greater than

0.66. Samples with quality scores below this threshold were

omitted because the genotype uncertainty can result in erroneous

reported read sizes. We used these genotype posteriors, together

with the optimization procedure and the appropriate scaled

Y-SNP phylogeny, to obtain a point estimate of the STR’s mutation

rate. Finally, using a delete-d jackknife procedure, we computed

a 95% confidence interval (CI) for the estimated mutation rate

(Appendix A).
Results

Verifying MUTEA by Using Simulations

We validated MUTEA’s inferences by running the algo-

rithm on simulated data from a wide range of Y-STR muta-

tion models (Appendix B). We tested mutation rates (m)

from 10�5 to 10�2 mpg, a range that encompasses most

known polymorphic Y-STRs. We also varied the distribu-

tion of step sizes for each STR mutation from a single

step (rM ¼ 1) to a wide range of mutation steps (rM ¼
0.75) and added various spring-like length constraints

that ranged from no constraint (b ¼ 0) to a strong attractor

toward the central allele (b ¼ 0.5).

MUTEA obtained unbiased estimates of the simulated

mutation rate for nearly all scenarios (Figure S2). We

observed a slight upward bias only for the estimates of

the slowest simulated mutation rate (m ¼ 10�5) as a result

of the lower bound imposed during numerical optimiza-

tion. In contrast, mutation rates estimated with simpler

mutation models limited to single-step mutations or no

length constraints were far more biased in these scenarios

(Figure S3). MUTEA’s inferences were also robust to the

presence of simulated PCR stutter noise. After forward

simulating STRs, we simulated reads for each genotype

and distorted their repeat numbers by using various

models of PCR stutter (Appendix C). We then input these

repeat counts into MUTEA instead of the STR genotypes.

Although MUTEA was completely blind to the selected

stutter parameters, it reported unbiased estimates of the

Y-STR mutation rates, step sizes, and stutter models for

nearly all scenarios (Figure 2; Figures S4–S6), although it

had just a slight bias for the lowest simulated mutation

rate, as was the case for the exact-genotype scenario

described above. As a negative control, we again ran

MUTEA on the stutter-affected reads but without employ-

ing the EM stutter-correction method. With this proce-

dure, posteriors based on the fraction of reads supporting

each genotype resulted in marked biases, particularly for

low mutation rates, demonstrating the importance of

correctly accounting for stutter artifacts in these settings

(Figure 2; Figures S5 and S6).
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Figure 2. Validating MUTEA by Using Simulations
STR sequencing reads with PCR stutter noise were simulated for a variety of sample sizes and mutation models (‘‘simulation parameters’’
panels). Applying MUTEA (red line) to these reads led to relatively unbiased mutation-rate estimates (upper panel) with small SDs
(second panel). As a negative control, we also applied a naive approach to correct for stutter noise (blue line). This approach computed
genotype posteriors by using the fraction of supporting reads, resulting in markedly biased mutation-rate estimates.
MUTEA Estimates Are Internally and Externally

Consistent

Encouraged by the robustness of our approach, we turned

to analyze real Y-STR data from the SGDP and the 1000 Ge-

nomes Y-STR call sets. In total, we examined ~4,500 STR

loci, 702 of which displayed length polymorphisms in

both datasets, and the rest were nearly fixed. We ran

MUTEA on each of these polymorphic STRs to estimate

its mutation rate (m), expected step size (rM), and stutter

parameters (u, d, and rs) in both datasets (Table S1).

The MUTEAmutation-rate estimates were largely consis-

tent between the datasets (Figure 3). We obtained an R2 of

0.92 when we compared the log mutation-rate estimates

from the 1000 Genomes and SGDP datasets for the 702

polymorphic markers. Importantly, this high concordance

was achieved despite substantial differences between the

analyzed populations, sample sizes, and quality of the

sequencing data. The 1000 Genomes data should have

higher rates of stutter than the SGDP data because of

the PCR amplification used in the preparation of the

sequencing library. Consistent with this expectation,

MUTEA learned higher stutter probabilities in the 1000 Ge-

nomes data than in the SGDP data for most loci (Figure S7,

left panels). Nonetheless, the mutation-rate estimates were

highly concordant. In addition, we found that despite dif-

ferences in the overall probability of stutter, the downward

and upward stutter rates were highly correlated between
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the two datasets (R2 ¼ 0.88 and R2 ¼ 0.68, respectively,

on the log scale), reflecting the algorithm’s ability to cap-

ture each locus’s distinctive error profile (Figure S7, right

panels).

Genotyping technology played only a small role in ex-

plaining the estimated concordance between the two data-

sets. We re-ran MUTEA on the 1000 Genomes Y-tree by

using capillary genotypes for 15 Y-STR loci that were avail-

able for the same samples (Figure 3). Comparing the result-

ing log mutation-rate estimates to those obtained with

sequencing-generated genotypes, we obtained an R2 of

0.98. These comparisons demonstrate that our method ob-

tains robust locus-specific mutation-rate estimates while

accounting for varying degrees of PCR stutter artifacts

and alignment and genotyping errors. Furthermore, the in-

ter-dataset concordance suggests either that there are very

few errors in the phylogenies or that these errors have little

impact on the resulting mutation-rate estimates.

We also validated our mutation-rate estimates by com-

paring them to results from previous studies that used

pedigree-based designs and capillary electrophoresis for

genotyping. In these studies, Burgarella et al.39 and Ballan-

tyne et al.21 estimated Y-STR mutation rates for specialized

panels of Y-STRs by examining approximately 500 and

2,000 father-son duos, respectively, per Y-STR.We observed

only a moderate replicability between the reported muta-

tion rates from these two prior studies (R2 of 0.34; Figure 3).
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Figure 3. Concordance of Mutation-Rate
Estimates across Datasets
The heatmap in the upper right corner pre-
sents the correlation between logmutation
rates obtained from two father-son capil-
lary-based studies (‘‘Ballantyne’’21 and
‘‘Burgarella’’39) and those we obtained by
using the 1000 Genomes WGS data
(‘‘1000 Genomes’’), the Simons Genome
WGS data (‘‘SGDP’’), and the capillary
data available for samples in 1000 Ge-
nomes (‘‘Powerplex’’). Each cell indicates
the number of markers involved in the
comparison and the resulting R2. Repre-
sentative scatterplots for three of these
comparisons depict the pair of estimates
for each marker (cyan) and the x ¼ y line
(red). The black arrow in the comparison
of SGDP and Ballantyne shows the effec-
tive lower limit of the Ballantyne et al. mu-
tation-rate estimates.
This low correlation presumably stems from the very small

number of transmissions used by Burgarella et al. On the

other hand, we observed an R2 of ~0.65 whenwe compared

either the SGDP or the 1000 Genomes estimates to those

from Ballantyne et al., despite considerably different meth-

odological approaches (Figure 3). One limitation of this

comparison is that Ballantyne et al. could not report pre-

cise mutation rates for slowly mutating Y-STRs because of

the number of meioses examined in their study. As a result,

their estimates were effectively restricted to a lower bound

of m ¼ 10�3.5 mpg (Figure 3, inset). In contrast, our deep

phylogeny enabled us to accurately estimate much lower

rates, highlighting the advantage of analyzing population

data rather than father-son pairs for slowly mutating STRs.

Comparing our estimates to those from Burgarella et al. re-

sulted in an R2 of ~0.3, but restricting this evaluation to the

subset of loci they characterized by using more than 5,000

father-son duos resulted in a substantially higher R2 of 0.87

(Figure S8). These results demonstrate that our estimates

are concordant with prior father-son based results, pro-

vided that the latter were generated with sufficiently

many pairs.

Characteristics and Determinants of Y-STR Mutations

Next, we analyzed the STR mutation patterns. To obtain a

single mutation-rate estimate for each Y-STR, we averaged

the estimates from the SGDP and 1000 Genomes datasets.

We found that the distribution of Y-STRmutation rates had

a substantial right tail, such thatmost STRsmutated at very

slow rates and only a few loci mutated at high rates

(Figure 4). On average, a polymorphic Y-STR mutates at a
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rate of 3.8 3 10�4 mpg and has a me-

dianmutation rate of 8.73 10�5 mpg.

The average Y-STR mutation rate is

an order of magnitude lower than

previous estimates from panel-based

studies. This difference cannot be ex-
plained by our phylogenetic measurement procedure

given that inspection of the same markers yielded rela-

tively concordant numbers. Instead, it most likely stems

from the ascertainment strategy of STR panels, which

select highly diverse loci that do not reflect the mutation

rates of most STRs. One caveat in this analysis is that

very long Y-STR markers were not accessible to Illumina

reads. These loci might affect the calculated average muta-

tion rate and, to a smaller extent, the median mutation

rate. Consistent with these explanations, our mutation-

rate estimates for previously characterized loci were up-

wardly enriched in relation to our estimates for all markers

(Figure 4).

Leveraging our catalog of Y-STR mutation rates, we

searched for loci with relatively high mutation rates. These

loci help to distinguish Y chromosomes of highly related

individuals and can help to precisely date patrilineal relat-

edness among individuals, which is important for forensics

and genetic genealogy. Most of the markers with the great-

est estimated mutation rates have been characterized in

prior studies (Table 1), but we identified six loci whose

mutation rates were estimated to be greater than ~2 3

10�3 mpg and are yet to be reported (Tables 2 and 3).

Two of these markers, DYS548 and DYS467, have been

used in previous genealogical panels, but to the best of

our knowledge, their mutation rates were never reported.

In addition, we identified more than 65 loci with dinucle-

otide motifs and mutation rates greater than ~3.33 3 10�4

mpg (Table 3; Table S1).

We observed wide variability in the mutation rates

and patterns between motif length classes. STRs with
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Figure 4. Distribution of Y-STR Mutation Rates
In red, we show the distribution of mutation rates across all STRs
in this study. The set of loci with previously characterized muta-
tion rates (orange) is substantially enriched with more-mutable
loci. When stratified by motif length, loci with tetranucleotide
motifs (dark blue) are the most mutable and are followed by loci
with trinucleotide (light blue) and dinucleotide (green) motifs.
tetranucleotide motifs had the greatest median mutation

rate (m ¼ 1.76 3 10�4 mpg) and were followed by those

with trinucleotide (m¼ 1.223 10�4 mpg), pentanucleotide

(m¼ 1.193 10�4 mpg), dinucleotide (m¼ 7.73 10�5 mpg),

and hexanucleotide motifs (m ¼ 3.28 3 10�5 mpg)

(Figure 4). However, within each motif class, mutation

rates varied by two ormore orders ofmagnitude, indicating

that other factors contribute to STR variability and high-

lighting that aggregate mutation-rate statistics depend on

the set of loci under consideration. We also found marked

differences in themutation patterns betweenmotif classes.

Loci with dinucleotide motifs and mutation rates greater

than 10�4 mpg had a median step-size parameter of

rM ¼ 0.8, implying that many of the de novo mutations

are expected to be greater than one repeat unit. On the

other hand, the median step-size parameter for longer

motif classes within this mutation-rate range was closer

to 1, implying that nearly all de novo events involve

single-step mutations.

Next, we harnessed the large number of Y-STRmutation-

rate estimates to identify the sequence determinants

of mutation rates. For STRs without repeat-structure inter-

ruptions, the length of the major allele explains a substan-

tial fraction of the variance in log mutation rates for

loci with di-, tri-, and tetranucleotide motifs (R2 ¼ 0.83,

R2 ¼ 0.67, and R2 ¼ 0.82, respectively; pentanucleotide

motifs were not assessed because of a small number of

data points). However, when we analyzed all STRs,

including those with interruptions, the length of the

major allele was a poor predictor and explained only a

modest amount of the variance (R2 ¼ 0.16, R2 ¼ 0.25,

and R2 ¼ 0.42; Figure 5, left panels). To construct an

improved model, we analyzed the relationship between
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the log mutation rate and the length of the longest unin-

terrupted repeat tract, regardless of the number of interrup-

tions (Figure 5, right panels). This model explained more

than 75% of the variance in mutability for each of the

three motif length classes. To assess the impact of the

repeat motif on the mutation rate, we stratified loci with

dinucleotide motifs by repeat sequence (AC, AG, or AT)

and once again regressed the log mutation rate on the

length of either the major allele or the longest uninter-

rupted tract (Figure S9). Major-allele length was again a

relatively poor predictor of the logmutation rate, but unin-

terrupted-tract length explained more than 80% of the

variance for each motif. Although these motif-specific

models improved the R2, the increase was quite limited,

suggesting that conditioned on the uninterrupted-tract

length, the repeat motif itself plays a minor role in the mu-

tation rate. Taken together, our results show that a simple

model of motif size and the length of the longest uninter-

rupted tract largely explains STR mutation rates.

Predicting Genome-wide STR Mutation Rates

Using the determinants found above, we estimated the

number of de novo mutations across the entire genome.

For each repeat-motif length, we trained a non-linear mu-

tation-rate predictor by using the uninterrupted-tract

lengths and mutation rates of the polymorphic Y-STRs.

To account for the fixed STRs in our dataset and to better

fit the model at shorter tract lengths, we assigned each

fixed locus a mutation rate of 10�5 mpg, the lower muta-

tion-rate boundary used by MUTEA (Figure S10), and we

jointly trained the predictors across all STRs. To validate

these predictors, we used them to estimate the mutation

rates of paternally transmitted autosomal CODIS markers,

which the National Institute of Standards and Technology

(NIST) had previously estimated via conventional means.

Our predictors explained about 75% of the variance in

the log mutation rates for these markers. In addition,

the median mutation rate reported by NIST (m ¼ 1.3 3

10�3 mpg) closely matched the result reported by our pre-

dictors (m¼ 1.03 10�3 mpg), suggesting that they generate

reliable predictions.

Next, we ran our predictors on each STR in the human

genome with 2–4 bp motifs, resulting in mutation-rate es-

timates for each of the ~590,000 loci (Table S2). Because

our model was trained with Y-STR mutation rates, these

estimates refer only to the paternally inherited half of

the genome. We discarded estimated rates below 1.25 3

10�5 mpg, because these are too close to the MUTEA lower

boundary and might therefore be upwardly biased. After

filtering, our model predicted that there are ~70,000 STRs

with mutation rates greater than 10�4 mpg and ~44,000

loci with mutation rates greater than 1 in 3,000 mpg and

that an STR should mutate at an average rate of 4.4 3

10�4 mpg. Stratifying our results by motif length, we pre-

dict 29, 3, and 33 de novo STR mutations for loci with

di-, tri-, and tetranucleotide motifs, respectively, on the

paternally inherited set of chromosomes.
016



Table 1. The Most Mutable Y-STRs with Previously Characterized Mutation Rates

Chr hg19 Start hg19 End Motif Mutation Rate (mpg)
Homogeneous-Tract
Length (bp) Name

Y 7,053,359 7,053,426 AAAG 1.37 3 10�2 68 DYS576

Y 7,867,880 7,867,943 AAAG 9.20 3 10�3 64 DYS458

Y 6,861,231 6,861,298 AAAG 7.80 3 10�3 72 DYS570

Y 14,515,312 14,515,363 AGAT 5.08 3 10�3 48 DYS439

Y 8,426,378 8,426,443 AAG 4.67 3 10�3 69 DYS481

Y 21,520,224 21,520,275 AGAT 4.50 3 10�3 48 DYS549

Y 18,718,889 18,718,940 AGAT 4.20 3 10�3 52 Y-GATA-A10

Y 4,270,960 4,271,019 AGAT 3.77 3 10�3 60 DYS456

Y 19,372,273 19,372,328 AGAT 2.88 3 10�3 48 DYS543

Y 14,761,101 14,761,160 AGAT 2.65 3 10�3 46 DYS442

The following abbreviation is used: Chr, chromosome.
Overall, we predict that 76–85 de novo STR mutations

occur each generation for the full set of chromosomes.

To account for the maternal chromosomes, we extrapo-

lated our paternal results by using prior estimates of

the male-to-female STR mutation-rate ratio (3.3:1 to

5.5:119,51). We posit that our estimates for STR de novo

mutational load are likely to be conservative. First, we

omitted loci with 5–6 bp motifs for which we did not

have sufficient data to build a mutation-rate model. Sec-

ond, for autosomal STRs whose uninterrupted-tract

lengths exceeded the maximal length observed in our

study, we estimated their mutation rates by using the

maximal Y-STR length. Given the strong positive correla-

tion between tract length and mutation rate observed in

our study, these loci are probably far more mutable.

Despite our conservative approach, the estimated number

of genome-wide de novo STR mutations rivals that of any

known class of genetic variation, including SNPs (~70

events per generation), indels (one to three events), and

SV and interspersed repeats (less than one event per gener-

ation).6,7,9,52 As such, our results highlight the putative

contribution of STRs to de novo genetic variation.

Y-STRs in Forensics and Genetic Genealogy

We assessed the applicability of our Y-STR results to the ge-

netic genealogy and forensic DNA communities. First, we

considered whether it would be possible to distinguish be-

tween closely patrilineally related individuals from high-

throughput sequencing data. On the basis of the entire

Y-STR set reported by our study, we expect roughly one

de novo mutation to occur every four generations. In

addition, from WGS data, one also expects to identify

approximately one de novo SNP every 2.85 genera-

tions,35 resulting in a 60% theoretical probability of

differentiating between a father and son’s Y chromosome

haplotype by high-throughput sequencing. Previous

studies have suggested that capillary genotyping of 13

rapidly mutating Y-STRs can discriminate between father-
The Am
son pairs in 20%–27% of cases.21,53 However, these partic-

ular markers are largely inaccessible to WGS data because

of their long lengths and highly repetitive flanking re-

gions, which preclude unique mapping. With increased

interest in high-throughput sequencing among genetic

genealogy services (e.g., FullGenomes and Big Y by

FamilyTreeDNA) and the forensics community, our results

suggest thatWGS can achieve better patrilineal discrimina-

tion than common panel-based methods. Of course, the

main caveat is that WGS technology is at least an

order of magnitude more expensive than a panel-based

approach. However, if the current trajectory of declining

sequencing costs continues, shotgun sequencing to

discriminate between closely patrilineally related individ-

uals might soon become economically viable.

We also assessed the accuracy of imputing Y-STR profiles

from Y-SNP data. This capability could be useful in forensic

cases involving a highly degraded male sample, from

which it would be difficult to obtain complete Y-STR pro-

files. In such cases, because there are many more SNPs

than STRs on the Y chromosome, it might be possible to

salvage some of those markers with a high-throughput

method and impute Y-STRs profiles for compatibility

with common forensic or genealogical databases.

For imputation, we created a framework called MUTEA-

IMPUTE. In brief, after building a SNP phylogeny relating

all samples and learning a mutation model as outlined in

Figure 1, MUTEA-IMPUTE passes two sets of messages

along the phylogeny to compute the exact marginal

posteriors for each node, resulting in imputation probabil-

ities for samples without observed Y-STR genotypes

(Appendix D). We assessed the accuracy of our algorithm

by imputing the 1000 Genomes individuals for the

PowerPlex Y23 panel, a set of markers regularly used in

forensic cases involving sex crimes. Over 100 iterations,

we randomly constructed reference panels of 500 samples

and used MUTEA-IMPUTE to calculate the maximum a

posteriori genotypes for a distinct set of 70 samples.
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Table 2. The Most Mutable Y-STRs with Tetranucleotide Motifs and Previously Uncharacterized Mutation Rates

Chr hg19 Start hg19 End Motif Mutation Rate (mpg)
Homogeneous-Tract
Length (bp) Name

Y 14,612,456 14,612,520 AGAT 5.07 3 10�3 59 DYS467

Y 5,409,729 5,409,801 AAAG 5.06 3 10�3 61 NA

Y 19,500,594 19,500,656 AAAG 4.89 3 10�3 63 NA

Y 14,200,743 14,200,802 AGAT 4.54 3 10�3 56 NA

Y 21,665,702 21,665,764 AAAT 3.66 3 10�3 50 DYS548

Abbreviations are as follows: Chr, chromosome; and NA, not available.
Despite the small size of the reference panel, we were

able to correctly impute an average of 66% of the geno-

types without any quality filtration (Table S3). Impor-

tantly, the resulting imputed probabilities roughly

matched the average accuracy, indicating that the poste-

riors computed by this technique are well calibrated

(Figure S11). Discarding imputed genotypes with poste-

riors below 70% resulted in an overall accuracy of 88%

and retained about 40% of the calls. On a marker-by-

marker basis, accuracy was generally inversely propor-

tional to the estimated mutation rates, such that the

most slowly mutating markers had accuracies on the order

of 95%. This trend stems from the fact that as themutation

rate increases, obtaining an estimate with similar confi-

dence requires shorter branch lengths. We envision that

a larger panel will substantially increase the ability to

correctly impute Y-STRs and might facilitate work with

highly degraded samples, a common issue in forensic

casework.
Discussion

Advances in sequencing technology have fundamentally

altered Y-STR analyses. The initial scarcity of SNP geno-

types led to the development of methods for inferring coa-

lescent models from Y-STR genotypes alone. Methods

designed to also learn STR mutational dynamics either

marginalized over these coalescent models54 or aimed to

simultaneously infer the coalescent and mutational

models.55,56 With the advent of population-scale WGS da-

tasets, many of these STR-centric approaches have instead

used SNPs, resulting in substantially more detailed phylog-

enies. For the Y chromosome, these detailed phylogenies

now provide the evolutionary context required for inter-

preting Y-STR mutations, obviating the need for computa-

tionally expensive tree enumeration or marginalization

approaches. However, the errors prevalent in WGS-based

Y-STR genotypes require methods capable of accounting

for genotype uncertainty, precluding the application of

many traditional microsatellite distance measures de-

signed for capillary data.45,46

In this study, we developedMUTEA, amethod that lever-

ages population-scale sequencing data to estimate Y-STR
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mutation rates. One inherent advantage of our approach

is its ability to model and learnmany of the salient features

of microsatellite mutations. By incorporating a geometric

step-size distribution, we allow both single-step mutations

that predominate at tetranucleotide loci19,57 and multi-

step mutations that frequently occur at dinucleotide

loci.19,58 In addition, the model’s length-constraint param-

eter captures the intra-locus phenomenon of shorter

STR alleles preferentially expanding and longer alleles pref-

erentially contracting.58,59 Because these parameters are

learned from observed STR genotypes, our method avoids

many biases that stem from imposing single-step muta-

tions or assuming parameters a priori.

In addition to having a flexible mutation-model frame-

work, our approach has both high throughput and a

high dynamic range. With WGS data, we were able

to assess every Y-STR that is accessible to Illumina

sequencing, dramatically increasing the catalog of poly-

morphic loci with estimated mutation rates. In addition,

by leveraging deep Y chromosome phylogenies, we were

able to obtain mutation-rate estimates for very slowly

mutating loci. Our estimates were highly replicable and

consistent, as demonstrated by the strong concordance be-

tween the estimates from the two WGS datasets.

Our approach has several inherent limitations. Because

Illumina datasets are currently composed of 75–100 bp

reads, we were unable to genotype and characterize the

mutation rates of both long Y-STRs and Y-STRs that reside

in heterochromatic regions. Because of the strong relation-

ship between tract length and mutation rate, we anticipate

that more rapidly mutating loci reside on the Y chromo-

some. In addition, we were unable to characterize the mu-

tation rates of homopolymers because base quality scores

degraded rapidly as allele length increased. As a result,

future studies might benefit from reapplying our analyses

as sequencing technologies, particularly those enabling

longer reads, continue to mature. Another limitation is

that our mutation model does not capture the full

complexity of STR mutational dynamics, given that it ig-

nores intra-locus mutation-rate variation.60 Incorporating

these and other mutational characteristics might be of in-

terest to future studies.

One longstanding question regarding Y-STR muta-

tion rates has been the apparent discrepancy between
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Table 3. The Most Mutable Y-STRs with Dinucleotide Motifs and Previously Uncharacterized Mutation Rates

Chr hg19 Start hg19 End Motif Mutation Rate (mpg)
Homogeneous-Tract
Length (bp) Name

Y 2,807,025 2,807,064 AT 3.62 3 10�3 44 NA

Y 2,708,412 2,708,457 AG 1.75 3 10�3 46 NA

Y 3,832,234 3,832,278 AC 1.66 3 10�3 45 NA

Y 6,398,638 6,398,684 AC 1.62 3 10�3 49 NA

Y 17,109,092 17,109,141 AC 1.57 3 10�3 48 NA

Abbreviations are as follows: Chr, chromosome; and NA, not available.
evolutionary and pedigree-based mutation rates. Several

studies have suggested that evolutionary rates are three

to four times lower, resulting in substantial inconsistencies

in Y-STR-based lineage dating and large discrepancies from

Y-SNP-based TMRCA estimates.20,47,61 Because our study

harnessed evolutionary data, we sought to avoid any po-

tential issues by scaling each phylogeny such that our esti-

mates best matched those from pedigree-based studies.

Nonetheless, our investigations into an alternative scaling

based on a SNP molecular clock resulted in similar scaling

factors that only differed by ~25%. Coupled with the

strong concordance we observed with pedigree-based esti-

mates, our study provides little evidence for a substantial

difference between mutation rates estimated from these

two types of data. Future work might benefit from assess-

ing whether these previously reported discrepancies were

due to the simplified Y-STR mutation models that the

approaches used to obtain evolutionary-based Y-STRmuta-

tion rates.

Our large corpus of mutation-rate estimates has enabled

us to dissect the sequence factors governing STRmutability.

Wedetermined that the lengthof the longest uninterrupted

tract is a strong predictor of the log mutation rate. This

observationmatches the exponential relationship between

mutation rate and tract length previously reported in

several pedigree-based studies.21,51,57,59 We also found

that the total length of themajor allelewas a poor predictor.

Coupled with the fact that Y-STRs without interruptions

were much more mutable than interrupted ones with the

same major-allele length, our study provides strong evi-

dence that interruptions to the repeat structure decrease

mutation rates. This finding supports what has long been

posited in STR evolutionary models62,63 and has been

shown in a handful of small-scale experimental studies of

STRmutability.64,65 However, it contradicts the recent find-

ings of Ballantyne et al., who observed no effect.21

Another open question is why STRs with dinucleotide

motifs have lower mutation rates, given their higher levels

of polymorphisms in the population. A previous large-scale

panel-based study reported that loci with dinucleotide

motifs have lower mutation rates than do loci with

tetranucleotide motifs.19 Our survey confirmed this obser-

vation without STR ascertainment directly based on their

polymorphism rates. However, genome-wide analyses of
The Am
STRs have shown that dinucleotides have more diverse

allelic spectra than do tetranucleotides.23,26 These results

areunlikely tobedue togenotypingerrors given that a study

of an individual sequenced to a depth of 1203 also showed

that dinucleotide repeats are more polymorphic than

other types of STRs.23 One potential explanation is that

STRs with dinucleotide motifs have larger step sizes but

lower mutation rates. However, we cannot exclude other

explanations, such as a difference in length constraint.

Our large compendium of mutation-rate estimates has

also enabled predictions about genome-wide STR variation.

Prior studies have estimated a rate of approximately 75

de novo mutations per generation4,8 but have largely

ignored STRs, despite their elevated mutation rates. On the

basis of our projections for paternally inherited chromo-

somes, thenumberofdenovoSTRmutations is likely to rival

the combined contribution of all other types of genetic var-

iants. Given that several lines of evidence have highlighted

the involvement of STR variations in complex traits,11–13,66

it will be important to assess the biological impact of these

de novo STR variations on human phenotypes.
Appendix A: Estimating CIs

We used a delete-d jackknife approach to estimate muta-

tion-rate CIs.67 For each Y-STR, we sampled without

replacement half of the STR genotypes a total of 100 times

and estimated the log mutation rate by using each of these

subsets. Given these subsample estimates and the log esti-

mate obtained from all samples, the SE and CI for the log

mutation rate were calculated as follows:

SE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

100

X100

i¼1

�
log mi �

1

100

X100

j¼1
log mj

�2
s

;

CI ¼ log mtot51:96 � SE;

where mtot is the estimate based on the full dataset.
Appendix B: Simulating Exact STR Genotypes

We used values of m, b, and rM ranging from 10�5 to 10�2,

0 to 0.5, and 0.75 to 1.0, respectively, to simulate geno-

types under a wide range of mutation models. Using either
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Figure 5. Sequence Determinants of
Y-STR Mutability
Each panel plots the estimated log muta-
tion rates (y axis) of STRs against either
the major-allele length (x axis, left panels)
or the length of the longest uninterrupted
tract (x axis, right panels) for various sizes
of repeat motifs (rows). The black lines
represent the mutation rate predicted by
a simple linear model. For a given allele
length (left panels), Y-STRs with no inter-
ruptions to the repeat structure (blue)
are generally more mutable than those
with one or more interruptions (red).
Whereas major-allele length alone is
poorly correlated with mutation rate
(left panels), the length of the longest un-
interrupted tract (right panels) is strongly
correlated regardless of the number of
interruptions.
the 1000 Genomes phylogeny or the SGDP phylogeny, we

performed each simulation as follows:

1. Randomly assign the root node an STR allele be-

tween �4 and 4, and mark it as active.

2. Remove an active node, and mark it as inactive. For

each of this node’s children, do the following:
930
i. Calculate the child’s allele probabilities by using

the branch length, the true mutation model, and

the parent node’s genotype.

ii. Randomly select an STR allele on the basis of

these probabilities.

iii. Mark the descendant node as active.

3. While active nodes remain, go to step 2.

4. Report the exact STR alleles for a random subset of

the samples (leaf nodes) on the basis of the required

sample size.
Appendix C: Simulating STR Sizes in Reads with

PCR Stutter

We first used the procedure above to simulate STR geno-

types down the phylogeny. We then used the true geno-

type for a particular sample gi and a given stutter model

to simulate the STR sizes observed in each read as follows:

1. Sample the number of observed reads nreads; i for each

sample with genotype gi from the read-count distri-

bution.

2. For each read from 1 through nreads; i, sample a num-

ber c ~U (0,1).
i. If c < d, randomly sample an artifact size aj from a

geometric distribution with parameter rs. Report

the read’s STR size as gi � aj.
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ii. If d% c < 1� u, report the read’s STR size as gi.

iii. Otherwise, randomly sample an artifact size aj
from a geometric distribution with parameter

rs. Report the read’s STR size as gi þ aj.
To assess whether estimates would be accurate for even

the most sparsely sequenced loci, we used read-count dis-

tributions obtained from both Y-STR call sets correspond-

ing to loci in the tenth coverage percentile. For Figure 2,

we used a stutter model with d ¼ 0.15, u ¼ 0.01, and

rs ¼ 0.8, and we used one, two, and three reads for 65%,

25%, and 10% of samples, respectively.
Appendix D: Y-STR Imputation

We extended MUTEA to impute missing STR genotypes.

Using the approach outlined in Figure 1, we first construct

a phylogeny relating all samples and learn a mutation

model. Then, we use this learned mutation model to pass

two sets of messages along the tree and compute exact pos-

teriors for each node, resulting in imputation probabilities

for samples with missing genotypes. For node Ni with

parent Pi, sibling Si, and children C1i and C2i, its condi-

tional genotype probability given the observed data D is

PðNi j DÞ ¼ P
�
Ni j DC1i

;DC2i
;D�Ni

�
¼ P

�
Ni;DC1i

;DC2i
j D�Ni

�	
P
�
DC1i

;DC2i
j D�Ni

�
¼ P

�
Ni j D�Ni

�
P
�
DC1i

;DC2i
j Ni;D�Ni

�	
P
�
DC1i

;DC2i
j D�Ni

�
fP

�
Ni j D�Ni

�
P
�
DC1i

j Ni

�
P
�
DC2i

j Ni

�
:

Here, DNi
and D�Ni

denote the genotype likelihoods in

and not in node Ni’s subtree, respectively. We note that

each of these terms is conditioned on the STR mutational

model M and the Y chromosome phylogeny T, but we

have omitted these terms here and below for brevity.



The second and third terms in the node posterior expres-

sion are computed with a bottom-up traversal of the tree

from the leaves to the root node. Each node in the tree

combines information from its two children by using the

recurrence

P
�
DCi1

j Ni

� ¼ X
a ˛ alleles

P
�
DC1i

;C1i ¼ a jNi

�
¼

X
a
P
�
DGC1i

;DGC2i
;Ci1 ¼ a jNi

�
¼

X
a
PðC1i ¼ a jNiÞP

�
DGC1i

j C1i ¼ a
�

3P
�
DGC2i

j C1i ¼ a
�
:

Here, GC1i and GC2i denote the two children of node C1i.

This recurrence applies to all nodes except the leaves,

where genotype posteriors or a uniform prior are used

for samples with and without genotype information,

respectively.

Similarly, the first term in the node posterior expression

is computed with a top-down traversal of the tree from the

root to the leaves. After the root node is assigned a uniform

prior probability, each node combines information from

its parent and sibling:

P
�
Ni j D�Ni

� ¼ X
a ˛ alleles

P
�
Ni;Pi ¼ a jDSi ;D�Pi

�
¼

X
a
P
�
Ni;Pi ¼ a;DSi j D�Pi

�	
P
�
DSi jD�Pi

�
¼

X
a
P
�
Pi ¼ a jD�Pi

�
P
�
DSi j Pi ¼ a;D�Pi

�
3 P

�
Ni j Pi ¼ a;DSi D�Pi

�	
P
�
DSi j D�Pi

�
f
X

a
P
�
Pi ¼ a j D�Pi

�
P
�
DSi j Pi ¼ a

�
PðNi j Pi ¼ aÞ:
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