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Mapping and characterization of structural 
variation in 17,795 human genomes

   
Haley J. Abel1,2,67, David E. Larson1,2,67, Allison A. Regier1,14, Colby Chiang1, Indraniel Das1, 
Krishna L. Kanchi1, Ryan M. Layer3,4, Benjamin M. Neale5,6,7, William J. Salerno8,  
Catherine Reeves9, Steven Buyske10, NHGRI Centers for Common Disease Genomics*,  
Tara C. Matise11, Donna M. Muzny8, Michael C. Zody9, Eric S. Lander5,12,13, Susan K. Dutcher1,2, 
Nathan O. Stitziel1,2,14 & Ira M. Hall1,2,14 ✉

A key goal of whole-genome sequencing (WGS) for human genetics studies is to 
interrogate all forms of variation, including single nucleotide variants (SNV), small 
insertion/deletion (indel) variants and structural variants (SV). However, tools and 
resources for the study of SV have lagged behind those for smaller variants. Here, we 
used a scalable pipeline22 to map and characterize SV in 17,795 deeply sequenced 
human genomes. We publicly release site-frequency data to create the largest 
WGS-based SV resource to date. On average, individuals carry 2.9 rare SVs that alter 
coding regions, affecting the dosage or structure of 4.2 genes and accounting for 
4.0-11.2% of rare high-impact coding alleles. Based on a computational model, we 
estimate that SVs account for 17.2% of rare alleles genome-wide with predicted 
deleterious effects equivalent to loss-of-function coding alleles; approximately 90% 
of such SVs are non-coding deletions (mean 19.1 per genome). We report 158,991 
ultra-rare SVs and show that around 2% of individuals carry ultra-rare 
megabase-scale SVs, nearly half of which are balanced or complex rearrangements. 
Finally, we infer the dosage sensitivity of genes and non-coding elements, revealing 
trends related to element class and conservation. This work will help guide SV 
analysis and interpretation in the era of WGS.

Human genetics studies employ WGS to enable comprehensive trait 
mapping analyses across the full diversity of genome variation, includ-
ing SVs (≥50 bp) such as deletions, duplications, insertions, inversions 
and other rearrangements. Prior work suggests a disproportionately 
large role for SVs (relative to their abundance) in rare disease biology1, 
and in shaping heritable gene expression differences in the human 
population2–4. Rare and de novo SV have been implicated in the genet-
ics of autism5–9 and schizophrenia10–13, but few other complex trait 
association studies have directly assessed SV14,15.

One challenge for SV interpretation in WGS-based studies is the lack 
of high-quality publicly available variant maps from large populations. 
Our current knowledge is based primarily on three sources: (1) a large 
and disparate collection of array-based studies16–18, with limited allele 
frequency data and low resolution; (2) the 1000 Genomes Project call-
set4, which has been invaluable but is limited by the modest sample size 
and low coverage design; and (3) an assortment of smaller WGS-based 
studies with varied coverage, technologies, analysis methods, and 
levels of data accessibility7,8,19–21.

There is an opportunity to improve knowledge of SV in human popu-
lations via systematic analysis of large-scale WGS data resources gen-
erated by programs such as the NHGRI Centers for Common Disease 
Genomics (CCDG). A key barrier to the creation of larger and more 
informative SV catalogs is the lack of computational tools that can scale 
to the size of ever-growing datasets. To this aim, we have developed a 
highly scalable open source SV analysis pipeline22, and used it to map 
and characterize SV in 17,795 deeply sequenced human genomes.

A population-scale SV map
The samples analyzed here are derived from common disease case/
control and quantitative trait mapping collections sequenced under 
the CCDG program, supplemented with ancestrally diverse samples 
from the PAGE consortium and Simons Genome Diversity Panel. The 
final ancestry composition includes 24% African, 16% Latino, 11% Finn-
ish, 39% non-Finnish European, and 9% other diverse samples from 
around the world (Extended Data Table 1).
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The tools and pipelines used for this work are described elsewhere22. 
Briefly, we developed a highly scalable software toolkit (svtools) and 
workflow for large-scale SV callset generation that combines per-sample 
variant discovery23, resolution-aware cross-sample merging, break-
point genotyping24, copy number annotation, and variant classifica-
tion (Extended Data Fig. 1). We created two distinct SV callsets using 
different reference genome and pipeline versions. The "B37" callset 
includes 118,973 high-confidence SV from 8,426 samples sequenced at 
the McDonnell Genome Institute and aligned to the GRCh37 reference 
genome. The "B38" callset includes 241,031 high-confidence SV from 
23,175 samples sequenced at four CCDG sites and aligned to GRCh38 
using the "functional equivalence" pipeline25 (see Methods). Of the 
26,347 distinct samples in the union of the two callsets, aggregate-level 
sharing is permitted for 17,795; these comprise the official public release 
(Supplementary Files 1 and 2). For simplicity of presentation, most 
analyses below focus on the larger B38 callset (Supplementary Table 1).

We observed a mean of 4,442 high-confidence SV per genome, pre-
dominantly deletions (35%), mobile element insertions (27%), and 
tandem duplications (11%) (Fig. 1b, Extended Data Figs. 2 and 3). Vari-
ant counts and linkage disequilibrium patterns are consistent with 
prior studies using similar methods4,26, and most SVs are mapped to 
base-pair resolution (Extended Data Figs. 2 and 3). As expected, the 
site-frequency spectrum approximates that of SNV and indels, the size 
distribution shows increasing length with decreasing frequency, and 
principal components analysis reveals population structure consistent 
with self-reported ancestry (Fig. 1, Extended Data Figs. 2-4). Per-genome 
SV counts are broadly consistent and vary as expected based on ances-
try, with more genetic variation in African-ancestry individuals and 
fewer singletons in Finns (Extended Data Figs. 2 and 3). Although we 
observe some technical variability due to cohort and sequencing center, 
these effects are mainly limited to small (<1 kb) CNVs detected solely by 
read-pair signals, which are sensitive to library preparation and align-
ment filtering methods (see Methods, Extended Data Fig. 3).

We further characterized callset quality using independent data and 
analyses (see Supplementary Note) including (i) validation by deep 
coverage (>52-85x) long-read data from nine genomes, (ii) sensitivity 
relative to a comprehensive long-read callset27, (iii) inheritance pat-
terns within a set of 3-generation pedigrees, and (iv) comparison to 
well-characterized short-read callsets4,27 (Supplementary Tables 2-4 
and Extended Data Figs. 5-7). We achieve a validation rate of 84% by 
long-read data, with higher validation rates for the variant classes 
most relevant to the findings below: deletions (87%), rare SV (90%) 
and singleton SV (95%). Based on the validation rates of SV frequency 
classes and their relative abundance in the full dataset, we estimate a 
false discovery rate of 7.0%. Although overall sensitivity is low (49%) 
compared to long-read SV maps due to the inherent difficulty of detect-
ing repetitive variants from short reads, it is comparable to published 
short-read callsets4,26,27, and substantially higher for functionally rel-
evant subtypes such as SV larger than 1 kb (63%) and predicted high 
impact variants (82%).

Burden of deleterious rare SV
The contribution of rare SV to human disease remains unclear. 
Well-powered WGS-based trait mapping studies will ultimately be 
required to address this; however, the overall burden of predicted 
pathogenic mutations in the human population is informative and can 
be estimated from our data. Our analysis of 14,623 individuals identi-
fied 42,765 rare SV alleles (MAF<1%) predicted to decrease gene dosage 
(n=9,416), alter gene function (e.g., single exon deletion; n=26,337), 
or increase gene dosage (n=7,012). The majority of rare gene-altering 
SVs are deletions (54.5%), with fewer duplications (42.2%), and a small 
fraction of other variant types, primarily inversions and complex rear-
rangements that interrupt or rearrange exons. Of these, 23.4% affect 
multiple genes and 10.4% affect 3 or more genes, resulting in a mean 

of 4.2 SV-altered genes per individual. Based on a strict definition of 
loss-of-function (LoF) SV – gene disruptions and gene deletions affect-
ing >20% of exons – we identified a mean of 1.39 rare SV-based gene LoF 
alleles per person. Analysis of 4,298 samples with SV and SNV/indel calls 
reveals that individuals carry a mean of 33.6 rare high-confidence LoF 
SNV and small indels (Fig. 2), consistent with prior studies28. Thus, SV 
accounts for 4-11.2% of rare, predicted high impact gene alterations in 
a population sample, depending on whether we consider all coding SV, 
or a strictly defined set of LoF variants (Fig. 2c). These are likely to be 
underestimates considering that the false negative rate of SV detection 
is typically higher than that of SNV and small indels24,27.

To characterize the relative impact of different coding SV classes we 
calculated two measures of purifying selection (Fig. 2d): (1) the fraction 
of variants that affect dosage tolerant genes with an LoF intolerance 
(pLI)28,29 score <0.9 (2) the fraction of variants present as "singletons" 
found in only one individual or family. By these measures, deletions are 
more deleterious than duplications, and complete gene deletions are 
the most deleterious class. Notably, based on the fraction of variants 
in dosage intolerant genes, complete gene duplications and sub-genic 
deletions affecting <20% of exons are relatively depleted, suggesting 
that many gene-altering SV are strongly deleterious, even if not pre-
dicted to completely obliterate gene function.

The above calculations ignore missense and non-coding variants that 
are expected to comprise a large fraction of rare functional variation. 
Predicting the impact of these variant types is challenging, but we 
can approximate their relative contribution to the deleterious variant 
burden under two simplifying assumptions: (1) impact prediction algo-
rithms such as CADD30 and LINSIGHT31 are capable of ranking variants 
within a given class (SNV, indel, SV) by their degree of deleteriousness, 
and (2) the mean deleterious impact of a given set of variants is reflected 
by its singleton rate. The first assumption is somewhat tenuous, but 
should be valid here given that impact prediction inaccuracies are likely 
to affect all variant classes similarly; the second should hold under an 
infinite sites model of mutation, which is reasonable for the (N=4,298) 
samples used in this analysis. We note that other evolutionary forces 
such as positive selection, background selection, and biased gene con-
version can also shape the site frequency spectrum; however, we expect 
that these forces would act similarly on the variant classes examined 
here, in a genome-wide analysis of a very large number of sites.

We used CADD and LINSIGHT to generate impact scores for SNV, 
indels, deletions and duplications (see Methods). As expected, these 
are highly correlated with singleton rate and variant effect predictions 
from VEP32 and LOFTEE28 (Fig. 3). We sought to identify "strongly del-
eterious" variants from each class by choosing impact score thresholds 
to match the singleton rate of the entire set of high-confidence LoF 
mutations. Individuals carried a mean of 121.9 such “strongly delete-
rious” rare variants, comprising 63% SNV, 19.8% indels and 17.2% SV 
(Fig. 3d). Given the relative numerical abundance of different rare vari-
ant classes, this suggests that a given rare SV is 841-fold more likely to 
be strongly deleterious than a rare SNV, and 341-fold more likely than 
a rare indel. Predicted deleterious SV are slightly larger than rare SV on 
the whole (median 4.5 vs. 2.8 kb). Whereas only a minority (13.1%) of 
predicted strongly deleterious SNV and indels are non-coding, 90.1% 
of predicted strongly deleterious rare SV are non-coding. In particular, 
the top 50% of non-coding deletions show similar levels of purifying 
selection (as measured by singleton rate) as high-confidence LoFs 
caused by SNV/indels (see Fig. 3c), implying that a typical individual 
carries 19.1 strongly deleterious rare non-coding deletion alleles. This 
suggests that non-coding deletions may have strong deleterious effects 
and play a larger than expected role in human disease.

Landscape of ultra-rare SV
Most ultra-rare SV represent recent or de novo structural mutations, 
and thus the relative abundance of different ultra-rare SV classes sheds 
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light on the underlying mutational processes at work. We identified 
158,991 ultra-rare SV (105,175 high-confidence) present in only one of 
14,623 individuals or private to a family. This corresponds to a mean 
of ~11.4 per individual (Extended Data Fig. 8a). Ultra-rare SV are mainly 
composed of deletions (5.2 per person) and duplications (1.3), with a 
smaller number of inversions (0.17).

It is of interest that ~40% of ultra-rare SV breakpoints in our data-
set cannot be readily classified into the canonical forms of SV. This 
is a known limitation of short-read WGS, and such variants are often 
ignored. Formally, these SVs are of the generic "breakend" (BND) class33. 
We examined the 63,559 ultra-rare BNDs for insights into their compo-
sition and origin. Many (17.0%) appear to be deletions too small (<100 
bp) to exhibit convincing read-depth support, and that our pipeline 
conservatively classifies as BNDs (e.g., complex SV can masquerade 
as deletions). 2.4% of the ultra-rare BND stem from 1,542 "retrogene 
insertions" caused by retroelement machinery acting on mRNAs. This 
set of retrogene insertions is ~10-fold larger than prior maps34–36 and 
will be valuable for future studies. 5.5% of ultra-rare BNDs are complex 
genomic rearrangements with multiple breakpoints in close proximity 
(<100 kb). The remainder are difficult-to-classify variants involving 
either local (49.9% ≤1 Mb), distant intra-chromosomal (5.7% >1 Mb), 
or inter-chromosomal alterations (27.2%), many (78.0%) of which are 
classified as low-confidence SV calls. This final class is likely caused 
primarily by repetitive element variation, but is also expected to be 
enriched for false positives.

A variety of sporadic disorders are caused by extremely large and/or 
complex SV, but knowledge of the frequency and architecture of these 
dramatic alterations in the general population is incomplete due to 
the limitations of array-based methods used in prior large-scale stud-
ies37, which fail to detect balanced events or resolve complex variant 
architectures. We observed 138 megabase-scale CNVs corresponding 
to a frequency of ~0.01 per individual; these include 47 deletions and 91 
duplications, and affect a mean of 12.1 genes (Extended Data Fig. 8b). 
Three individuals carried 2 megabase-scale CNVs, apparently due to 
independent mutations. We observed 19 reciprocal translocations 
(0.001 per individual), consistent with prior cytogenetic-based esti-
mates38,39. Of these translocations, 14 affect one gene and 2 affect two 
genes, producing 1 predicted in-frame gene fusion (PI4KA:MGLL). We 
applied breakpoint clustering (as in40) to identify ultra-rare complex 
rearrangements and discovered 33 complex SVs spanning >1 Mb (0.003 
per individual). Most of these (20/33, 60.6%) involve three breakpoints; 
however, we observed 5 large-scale rearrangements with 5 or more 
breakpoints. Notably, when the entire SV size distribution is considered, 
3.3% of ultra-rare SVs are complex variants, consistent with previous 
smaller-scale studies41–45.

Dosage sensitivity
A motivation for creating population-scale SV maps is to annotate 
genomic regions based on their tolerance to dosage changes and 
structural rearrangements, thus revealing the genes and non-coding 
elements most important (or dispensable) for human development and 
viability. The pLI score from ExAC/gnomAD28,29 has proven invaluable 
for this purpose but does not predict the effects of increased dosage 
or include non-coding elements.

We first generated DEL and DUP sensitivity scores for each gene 
based on the observed frequency of CNV in the combined dataset of 
17,795 samples (as in46, see Methods). The resulting scores correlate 
with the CNV scores from ExAC46, and with the DECIPHER haploinsuf-
ficiency score47 (Extended Data Fig. 9). Despite their relatively modest 
correlations with each other, all three measures are informative based 
on comparison to pLI, which was generated using an independent set 
of variants (SNV and indels). A combined score from multiple datasets 
performs better than any single score, and may be useful for interpret-
ing rare SVs (Supplementary File 4).

We next performed a genome-wide analysis based on the frequency 
of dosage alterations in 1 kb genomic windows (see Methods). Our cur-
rent dataset is not large enough to predict dosage sensitive non-coding 
elements based on the absence of variation; however, we can investigate 
the relative sensitivity of genomic features in aggregate. As expected, 
we observe a strong depletion of CNV near coding exons that varies 
by proximity to the nearest exon as well as pLI of the corresponding 
gene (Fig. 4a). We therefore estimated odds ratios for depletion of 
CNV in each functionally annotated region, stratified by distance and 
pLI of the nearest exon. The resulting dosage sensitivity scores mirror 
independent measures of selective constraint including LINSIGHT and 
PHASTCONS (Fig. 4b).

We also examined the relative dosage sensitivity of regulatory and 
epigenomic annotations from various projects48–53 (Fig. 4). Regulatory 
elements such as enhancers, polycomb repressors, DNase hypersen-
sitivity sites, and transcription factor binding sites show strong sensi-
tivity to dosage loss via deletion, whereas regions of inert non-coding 
annotations do not. The patterns of sensitivity to dosage gains via 
duplication are broadly similar, albeit weaker, with no obviously distinct 
patterns at (for example) enhancers, repressors or insulators. Dosage 
sensitivity of regulatory elements at "bivalent" genomic regions from 
ROADMAP is greater than their counterparts (e.g., enhancers vs. biva-
lent enhancers), suggesting that such elements may be under especially 
strong selection. Further, dosage sensitivity increases with the number 
of cell-types sharing a given annotation, suggesting a higher sensitivity 
for constitutive regulatory elements compared to those that act in a 
more cell-type specific manner.

Discussion
Here, we have conducted the largest WGS-based study of SV in the 
human population to date. The sample size and use of deep (>20x) WGS 
allowed us to map rare SVs at high genomic resolution and estimate 
the relative burden of deleterious SV. Our data suggest that rare SV 
account for 4-11.2% of deleterious coding alleles and 17.2% of deleteri-
ous alleles genome-wide, an outsized contribution considering that SVs 
comprise merely ~0.1% of variants. Noteworthy is the burden of rare, 
strongly deleterious non-coding deletions apparent in our dataset: 
we estimate that a typical individual carries ~19 rare non-coding dele-
tions that exhibit levels of purifying selection similar to LoF SNV and 
indels (of which there are ~34 per individual). These results indicate 
that comprehensive assessment of SV will improve power in rare vari-
ant association studies.

The public site-frequency maps reported here will also aid variant 
interpretation in smaller scale WGS-based studies (e.g., via allele fre-
quency look-ups), in particular as they were generated via systematic 
joint analysis of large datasets from diverse populations (similar to ExAC/
gnomAD28). One limitation is the high false negative rate for repetitive 
SV including mobile element insertions (MEI), short tandem repeats 
(STR) and multi-allelic CNVs (mCNV) due to the limitations of algorithms 
that rely on unique short-read alignments. Whereas we have reported 
a mean of 4,442 SV per genome, recent long-read analyses predict up 
to ~27,662 SV per genome, including STRs and other highly repetitive 
elements27. Although the inherent limitations of short-read WGS can-
not be overcome, this resource could be made more comprehensive in 
future work with specialized algorithms tailored to MEI, STR and mCNV.

Finally, we have mined this resource to assess the dosage sensitivity 
of genes and non-coding elements. At genes, our results complement 
existing estimates from exome sequencing and microarray data. At 
non-coding elements, we observe strong correlations with measures 
of nucleotide conservation, purifying selection, regulatory element 
activity, and cell-type specificity. Although our current sample size 
is insufficient to assess dosage-sensitivity of individual non-coding 
elements, this will become feasible as large-scale WGS resources from 
ongoing international programs become available.
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Fig. 1 | The public version of the B38 callset derived from 14,623 samples.  
(a) Self-reported ancestry. Abbreviations are as follows: AFR, African; AMR, 
admixed American; EAS, east Asian; FE, Finnish European; NFE, non-Finnish 
European; PI, Pacific Islander; SAS, South Asian. (b) Number of SVs per sample 
(x-axis, square-root scaled) by SV type (y-axis) and frequency class (panels 
labelled at top). SV classes are defined as: DEL, deletion; MEI, mobile element 
insertion; DUP, duplication; INV, inversion; BND, “break-end”, which is a generic 
term in the VCF specification for SV breakpoints that cannot be unequivocally 
classified. Minor allele frequency (MAF) bins are defined as: “ultra-rare” is 

private to an individual or family; “rare” is MAF<1%; “low-frequency” is 
1%<MAF<5%; “common” is MAF>5%. (c) Number of high-confidence SVs by class 
and frequency bin. (d) CNV length distributions for each frequency class, 
defined as in part (b). (e) MAF distribution for SNV (N=85,687,916), indel 
(N=9,477,540), deletion (DEL, N=43,872) and duplication (DUP, N=10,805) 
variants for a subset of 4,298 samples for which GATK-based SNV/indel calls 
were also available. All boxplots in this figure indicate the median and the first 
and third quartiles.
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Fig. 2 | Burden of rare gene-altering SV. (a) Per-sample mean number of gene 
alterations by type and frequency class, in 4,298 samples. (b) Per-sample mean 
number of rare (<1% MAF) high-confidence PTV by type and VEP consequence. 
(c) Per-sample mean number of rare (<1% MAF) SV-derived gene alterations by 
type. DEL and DUP are classified into ‘strong’ (affecting >20% of exons of 
principal transcript) and ‘weak’ (affecting <20% of exons of principal 
transcript) and subclassified as ‘internal’ (variant overlaps at least one coding 
exon, but neither the 3’ nor 5’ end of the principal transcript), 3prime (variants 
overlaps the 3’ end of the transcript), 5prime (variant overlap the 5’ end of the 
transcript), and complete (variant overlaps all coding exons in principal 

transcript), (d) (top) Fraction of rare (<1% MAF), gene-altering variants 
occurring in low pLI (pLI<0.9) vs. high pLI (pLI>=0.9) genes, by type, size class, 
and gene region, in the B38 callset (N=14,623). Error bars indicate 95% 
confidence intervals (Wilson score interval). The dotted line indicates the 
expected fraction, assuming a uniform distribution of SV in coding exons. 
(bottom) Singleton rates for gene-altering variants by type in the B38 callset 
(N=14,623), restricted to genes with pLI>0.1. Error bars indicate 95% Wilson 
score confidence intervals. See Supplementary Table 5 for the number of 
variants in each category.
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Fig. 3 | Estimation of genome-wide burden of high-impact functional 
alleles. (a) Singleton rates for SNV, by VEP consequence and percentile of 
combined VEP/CADD impact score. (b) Singleton rates for indels. (c) Singleton 
rates by variant type and percentile of combined VEP/CADD impact score. 
Here, "other LoF" indicates VEP-annotated protein-truncating variants (PTVs) 
that are not classified as high-confidence by LOFTEE. DELs and DUPs that 

intersect any coding exon of the principal transcript are classified as "coding"; 
otherwise they are "noncoding". The horizontal line shows the singleton rate 
for all high confidence SNV/indel LoFs. (d) Per-sample mean number of 
"strongly deleterious" alleles genome-wide, by type and frequency class. In 
panels (a)-(c), error bars indicate the 95% confidence interval (Wilson score 
method). See Supplementary Table 6 for counts of variants in each category.
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Fig. 4 | Dosage-sensitivity of functional annotations. (a) Fraction of 1 kb 
genomic windows containing at least one CNV, as a function of distance to the 
nearest coding exon and the pLI of that gene. (b) Depletion of CNV in conserved 
genomic regions. Log-odds ratios for the occurrence of CNV in highly 
conserved (based of LINSIGHT or PHASTCONS percentile) vs. less-conserved 
regions. Odds ratios are Cochran-Mantel-Haenszel estimates, stratified by 

distance to and pLI of nearest coding exon. (c) Log-odds ratios (estimated as in (b))  
for the occurrence of CNV in 1 kb windows intersecting various functional 
annotation tracks. (d) Log-odds ratios (estimated as in (b)) for the occurrence 
of CNV in 1 kb windows overlapping roadmap segmentations, stratified by the 
number of roadmap tissues in which the region is observed. All error bars 
indicate 95% confidence intervals estimated by block bootstrap.
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Methods

Generation of the “Build 38” (B38) callset
Per-sample processing. This callset is derived from 23,559 individu-
als that were part of the CCDG program as well as 950 Latino samples 
from the PAGE consortium. All data was produced at one of the four 
CCDG-funded sequencing centers and aligned to genome build GRCh38 
using each individual center’s functionally equivalent pipeline imple-
mentation25. Per-sample calling was performed on 23,547 samples 
using LUMPY23 (v0.2.13), CNVnator54 (v0.3.3) and svtyper24 (v0.1.4). 
We excluded HLA, decoy or alternate contigs and regions of much 
higher than the expected copy number (>12 mean copies per genome 
across 409 samples) from SV calling with LUMPY (https://github.com/
hall-lab/speedseq/blob/master/annotations/exclude.cnvnator_100bp.
GRCh38.20170403.bed).

Per-sample QC. We observed an excess of small (400 - 1000 bp) single-
ton deletions (i.e., present in only a single sample), suggesting a large 
number of false positives. On further investigation, this excess arose 
from differences between centers in library insert-size distribution. 
To reduce the number of false positive small deletions, deletions of 
≤1000 bp were eliminated unless they had split read support in at least 
one sample. Subsequently, per-sample quality control was performed 
to eliminate outlier samples. We removed 213 samples where variant 
counts (for any SV type) were >6 median absolute deviations from the 
median count for that type.

Merging and cohort-level re-genotyping. The remaining samples 
were processed into a single, joint callset using svtools22 (https://github.
com/hall-lab/svtools) (v0.3.2), modified to allow for multi-stage merg-
ing. The code for this merging is available in a container via DockerHub 
(https://hub.docker.com/) (ernfrid/svtools_merge_beta@sha256:12
6ad19ad1aae53d05127df93105d83d236ddfb11a8aa65344f0d0aee93
6f919). Samples were merged using svtools lsort followed by svtools 
lmerge in batches of 1000 samples (or fewer) within each cohort. The 
resulting per-cohort batches were then merged again using svtools lsort 
and svtools lmerge to create a single set of variants for the entire set of 
23,331 remaining samples. This site list was then used to genotype each 
candidate site in each sample across the entire cohort using svtyper 
(v0.1.4). Genotypes for all samples were annotated with copy number 
information from CNVnator. Subsequently, the per-sample VCFs were 
combined together using svtools vcfpaste. The resulting VCF was anno-
tated with allele frequencies using svtools afreq, duplicate SVs pruned 
using svtools prune, variants reclassified using svtools classify (large 
sample mode), and any identical lines removed. For reclassification 
of chromosomes X and Y, we used a container hosted on DockerHub 
(ernfrid/svtools_classifier_fix:v1). All other steps to assemble the cohort 
above used the same container used for merging.

Callset tuning. Using the variant calling control trios, we chose a Mean 
Sample Quality (MSQ) cutoff for inversions (INV) and breakends (BNDs) 
that yielded approximately a 5% Mendelian error rate (ME). Inversions 
passed if: MSQ ≥ 150; neither split-read nor paired-end lumpy evidence 
made up <10% of total evidence; each strand provided at least >10% of 
read support . BNDs passed if MSQ ≥ 250.

Genotype refinement. Mobile element insertion (MEI) and deletion 
(DEL) genotypes were set to missing on a per-sample basis (https://
github.com/hall-lab/svtools/blob/develop/scripts/filter_del.py, com-
mit 5c32862) if the site was poorly captured by split-reads. Genotypes 
were set to missing if the size of the DEL or MEI was smaller than the 
minimum size discriminated at 95% confidence by svtyper (https://
github.com/hall-lab/svtools/blob/develop/scripts/del_pe_resolution.
py, commit 3fc7275). DEL and MEI genotypes for sites with allele fre-
quency ≥0.01 were refined based on clustering of allele balance and 

copy number values within the datasets produced by each sequencing 
center (https://github.com/hall-lab/svtools/blob/develop/scripts/
geno_refine_12.py, commit 41fdd60). In addition, duplications were 
re-genotyped with more sensitive parameters to better reflect expected 
allele balance for simple tandem duplications (https://github.com/
ernfrid/regenotype/blob/master/resvtyper.py, commit 4fadcc4).

Filtering for size. The remaining variants were filtered to meet the 
size definition of an SV (≥50 bp). The length of intra-chromosomal 
generic breakends (BNDs) was calculated using vawk (https://github.
com/cc2qe/vawk) as the difference between the reported positions 
of each breakpoint.

Large callset sample QC. Of the remaining samples, we evaluated 
per-sample counts of deletions, duplications, and generic breakends 
within the low allele frequency (0.1% - 1%) class. Samples with variant 
counts exceeding 10 median absolute deviations from the mean for any 
of the 3 separate variant classes were removed. In addition, we removed 
samples with genotype missingness >2% . These QC filters removed a 
total of 120 additional samples. Finally, we removed 64 samples that 
were identified as duplicates or twins in a larger set of data.

Breakpoint resolution
Breakpoint resolution was calculated using bcftools (v1.3.1) query to 
create a table of confidence intervals for each variant in the callset, but 
excluding secondary BNDs. Each breakpoint contains two 95% confi-
dence intervals, one each around the start location and end location. 
Summary statistics were calculated in RStudio (v1.0.143; R version 3.3.3).

Self-reported ethnicity
Self-reported ethnicity was provided for each sample via the sequenc-
ing center and aggregated by the NHGRI Genome Sequencing Program 
(GSP) coordinating center. For each combination of reported ethnicity 
and ancestry, we assigned a super-population, continent (based on 
the cohort), and ethnicity. Samples where ancestry was unknown, but 
the sample was Hispanic, were assigned to the Americas (AMR) super-
population. Summarized data are presented in Extended Data Table 1.

Sample relatedness
As SNV calls were not yet available for all samples at the time of the anal-
ysis, relatedness was estimated using large (>1 kb), high-quality auto-
somal deletions and mobile element insertions with allele frequency 
>1%. These were converted to plink format using plink (v1.90b3.38) and 
then subjected to kinship calculation using KING55 (v2.0). The resulting 
output was parsed to build groups of samples connected through first 
degree relationships (kinship coefficient > 0.177). Correctness was 
verified by the successful recapitulation of the 36 complete Coriell 
trios included as variant calling controls.

Callset summary metrics
Callset summary metrics were calculated by parsing the VCF files with 
bcftools (v1.3.1) query to create tables containing information for each 
variant/sample pairing or variant alone, depending on the metric. 
Breakdowns of the BND class of variation were performed using vawk 
to calculate orientation classes and sizes. These were summarized 
using Perl and then transformed and plotted using RStudio (v1.0.143; 
R version 3.3.3).

Ultra-rare variant analysis
We defined an ultra-rare variant as any variant unique to one individual 
or one family of first degree relatives. We expect the false positive rate 
of ultra-rare variants to be low because systematic false positives due 
to alignment issues are likely to be observed in multiple unrelated 
individuals. Therefore, we considered both high and low confidence 
variants in all ultra-rare analyses.
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Constructing variant chains. Complex variants were identified as 
in Chiang et al.3 by converting each ultra-rare SV to BED format and, 
within a given family, clustering breakpoints occurring within 100,000 
bp of each other using bedtools56 (v2.23.0) cluster. Any clusters linked 
together by BND variants were merged together. The subsequent collec-
tion of variant clusters and linked variant clusters (hereafter referred to 
as chains) were used for both retrogene and complex variant analyses.

Manual review. Manual review of variants was performed using IGV 
(v2.4.0). Variants were converted to BED12 using svtools (v0.3.2) for 
display within IGV. For each sample, we generated copy number profiles 
using CNVnator (v0.3.3) in 100 bp windows across all regions contained 
in the variant chains.

Retrogene insertions. Retrogene insertions were identified by examin-
ing the ultra-rare variant chains constructed as described above. For 
each chain, we identified any constituent SV with a reciprocal overlap 
of 90% to an intron using bedtools (v2.23.0). For each variant chain, 
the chain was deemed a retrogene insertion if it contained one or more 
BND variants with +/- strand orientation that overlapped an intron. 
Additionally, we flagged any chains that contained non-BND SV calls, 
as their presence was indicative of a potential misclassification, and 
manually inspected them to determine if they represented a true ret-
rogene insertion.

Complex variants. We retained any cluster(s) incorporating 3 or more 
SV breakpoint calls, but removed SVs identified as retrogene insertions 
either during manual review or algorithmically. In addition, we excluded 
one call deemed to be a large, simple variant after manual review.

Large variants. Ultra-rare variants >1 Mb in length were selected and 
any overlap with identified complex variants identified and manually 
reviewed. Of 5 potential complex variants, one was judged to be a sim-
ple variant and included as a simple variant while the rest were clearly 
complex variants and excluded. Gene overlap was determined as an 
overlap ≥1 bp with any exon occurring within protein-coding transcripts 
from Gencode v27 marked as a principal isoform according to APPRIS57.

Balanced Translocations. Ultra-rare generic "breakend" (BND) vari-
ants, of any confidence class, connecting two chromosomes and with 
support (>10%) from both strand orientations were initially considered 
as candidate translocations. We further filtered these candidates to 
require exactly two reported strand orientations indicating recipro-
cal breakpoints (i.e. +-/-+, -+/+-, --/++, ++/--), no read support from any 
sample with a homozygous reference genotype, at least one split-read 
supporting the translocation from samples containing the variant, and 
<25% overlap of either breakpoint with any simple repeat (downloaded 
from ftp://hgdownload.cse.ucsc.edu/goldenPath/hg38/database/
simpleRepeat.txt.gz).

Comprehensive annotations from the Gencode v27 GTF (ftp://ftp.ebi.
ac.uk/pub/databases/gencode/Gencode_human/release_27/gencode.
v27.annotation.gtf.gz) were used to determine the number of affected 
genes. A BED file of all introns was created by converting transcripts and 
exons to BED entries and subtracting all exons from their respective 
transcripts using bedtools (v2.23.0). To identify translocations affect-
ing genes, the translocations were converted to BEDPE using svtools 
(v0.3.1), padded by 1 bp and intersected with introns using bedtools 
(v2.23.0). The number of unique chromosome/gene name pairs for 
each translocation was used to determine the number of affected genes 
affected by each breakpoint.

To determine if a translocation resulted in an in-frame fusion, we 
converted to BEDPE, padded by 1 bp and intersected the breakpoints 
with all introns using bedtools (v2.23.0). Each intron entry was then pad-
ded by 1 bp and intersected with the Gencode GTF file using bedtools 

(v2.23.0) and restricting to coding exons of the same transcript as the 
intron. Then, for each set of exons intersected by a given translocation, 
all combinations of transcripts were compared, taking into account 
their orientation and the orientation of the breakpoint, to determine if 
frame was maintained across the potentially fused exons. The resulting 
two candidate translocations were manually reviewed by reconstruct-
ing the transcript sequence of the fusion and translating the resulting 
DNA sequence using https://web.expasy.org/translate/ to confirm a 
single open reading frame was maintained.

Generation of the "Build 37" (B37) callset
Per-sample processing. This callset was constructed starting from a 
set of 8,455 individuals: 8,181 samples from 8 cohorts sequenced at the 
McDonnell Genome Institute, as well as 274 samples from the Simons 
Genome Diversity Project downloaded from EMBL-EBI (https://www.
ebi.ac.uk/ena/data/view/PRJEB9586). All samples passed standard 
production QC metrics and had a mean depth of coverage > 20X. Data 
were aligned to GRCh37 using the speedseq (v0.1.2) realignment pipe-
line. Per-sample SV calling was performed with speedseq sv (v0.1.2) 
using LUMPY (v0.2.11), cnvnator-multi, and svtyper (v0.1.4) on our local 
compute cluster. For LUMPY SV calling, we excluded high copy number 
outlier regions derived from >3,000 Finnish samples as described 
previously22 (https://github.com/hall-lab/speedseq/blob/master/
annotations/exclude.cnvnator_100bp.112015.bed).

Per-sample QC. Following a summary of per-sample counts, samples 
with counts of any variant class (DEL, DUP, INV, or BND) exceeding 
the median plus 10 times the median absolute deviation for that class 
were excluded from further analysis; 17 such samples were removed.

Merging. The remaining samples were processed into a single, joint 
callset using svtools (v0.3.2) and the two-stage merging workflow (as 
described above): each of the 9 cohorts was sorted and merged sepa-
rately in the first stage, and the merged calls from each cohort sorted 
and merged together in the second stage.

Cohort-level re-genotyping. The resulting SV loci were then 
re-genotyped with svtyper (v0.1.4) and copy-number annotated using 
svtools (v0.3.2) in parallel, followed by combination of single-sample 
VCFs, frequency annotation, and pruning using the standard workflow 
for svtools (v0.3.2). A second round of re-genotyping with more sen-
sitive parameters to better reflect expected allele balance for simple 
tandem duplications (https://github.com/ernfrid/regenotype/blob/
master/resvtyper.py, commit 4fadcc4) was then performed, followed 
by another round of frequency annotation, pruning, and finally reclas-
sification using svtools (v0.3.2) and the standard workflow.

Callset tuning and site-level filtering. Genotype calls for samples 
in 452 self-reported trios were extracted, and Mendelian error rates 
calculated using a custom R script; we counted as a Mendelian error 
any child genotype inconsistent with inheritance of exactly one allele 
from the mother and exactly one allele from the father. Filtering was 
performed as described for the B38 callset: Inversions passed if: MSQ 
≥ 150; neither split-read nor paired-end lumpy evidence made up <10% 
of total evidence; each strand provided at least >10% of read support. 
Generic breakends passed if MSQ ≥ 250. SV of length <50 bp were re-
moved, according to our working definition of ‘structural variation’.

Final sample-level filtering. Nine samples with retracted consents, 
and two hydatidiform mole samples were removed from the callset. 
Subsequently, the numbers of qc-passing, very rare (< 0.1% MAF) DEL, 
DUP, and BND per sample were determined. Excluding the samples in 
the Simons Genome Diversity cohort (which were expected, in general, 
to have unusually high counts of rare variants), we determined the me-
dian and median absolute deviation (MAD) of the per-sample counts 
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of each type, and excluded outlier samples with a count exceeding the 
median+10*MAD of any type. Nine samples were removed in this way. 
Finally, kinship was estimated using KING (v2.0) based on high-quality, 
autosomal deletion and MEI calls with population allele frequency>1%. 
Each SV was annotated in the VCF according to the number of distinct, 
first-degree family clusters in which it was observed, as for the Build38 
callset.

Principal components analysis. A set of unrelated individuals (con-
taining no first or second degree relatives) was extracted using KING 
(v2.0). PCA was performed using smartpca (version 13050) on a VCF 
of all high-quality DEL and MEI variant calls with population allele fre-
quency > 1%. Eigenvectors were estimated based on the set of unrelated 
samples, and then all samples projected onto the eigenvectors.

Build38 (B38) SNV/indel callset generation and QC
Per-sample calling was performed at the Broad Institute as part of CCDG 
joint-calling of 22,609 samples using GATK58 (https://www.biorxiv.org/
content/early/2018/07/24/201178) HaplotypeCaller v3.5-0-g36282e4. 
All samples were joint called at the Broad using GATK v4.beta.6, filtered 
for sites with an excess heterozygosity value of more than 54.69, and 
recalibrated using VariantRecalibrator with the following features: 
QD, MQRankSum, ReadPosRankSum, FS, MQ, SOR, and DP. Individual 
cohorts were subset out of the whole-CCDG callset using Hail v0.2 
(https://github.com/hail-is/hail). Following SNV and indel variant 
recalibration, multiallelic variants were decomposed, and normal-
ized with vt (v0.5)59. Duplicate variants and variants with symbolic 
alleles were then removed. Afterwards, variants were annotated with 
custom computed allele balance statistics, 1000 Genomes allele fre-
quencies29, gnomAD based population data28, VEP (v88)60, CADD30 
(v1.2), and LINSIGHT31. Variants having greater than 2% missingness 
were soft filtered. Samples with high rates of missingness (>2%) or 
with mismatches between reported and genetically-estimated sex 
(determined using plink v1.90b3.45 sex-check) were excluded. The 
LOFTEE plugin (v0.2.2-beta; https://github.com/konradjk/loftee) was 
used to classify putative LoF SNV and indels as high or low confidence.

Annotation of gene-altering SV calls
The VCF was converted to BEDPE format using svtools vcftobedpe The 
resulting BEDPE file was intersected (using bedtools (v2.23.0) intersect 
and pairtobed) with a BED file of coding exons from Gencode v27 with 
principal transcripts marked according to APPRIS57. The following 
classes of SV were considered putative gene-altering events: (1) DEL, 
DUP, or MEI intersecting any coding exon; (2) INV intersecting any 
coding exon and with either breakpoint located within the gene body; 
and (3) BND with either breakpoint occurring within a coding exon.

Gene-based estimation of dosage sensitivity
We followed the method of Ruderfer et al.46, to estimate genic dosage 
sensitivity scores using counts of exon-altering deletions and duplica-
tions in a combined callset comprising the 14,623 sample pan-CCDG 
callset plus 3,172 non-redundant samples from the B37 callset. Build37 
CNV calls were lifted over to build38 as BED intervals using crossmap 
(v0.2.1)61. We determined the counts of deletions and duplications inter-
secting coding exons of principal transcripts of any autosomal gene. 
In Ruderfer et al.46, the expected number of CNVs per gene was mod-
eled as a function of several genomic features (GC content, mean read 
depth, etc.), some of which were relevant to their exome read-depth 
CNV callset but not to our WGS-based breakpoint mapping lumpy/
svtools callset. In order to select the relevant features for prediction, 
using the same set of gene-level annotations as in Ruderfer et al.46, we 
restricted to the set of genes in which fewer than 1% of samples carried 
an exon-altering CNV, and used l1-regularized logistic regression (from 
the R glmnet package62, v2.0-13), with the penalty λ chosen by 10-fold 
cross-validation. The selected parameters (gene length, number of 

targets, and segmental duplications) were then used as covariates in 
a logistic regression-based calculation of per-gene intolerance to DEL 
and DUP, similar to that described in Ruderfer et al.46. For deletions (or 
duplications, respectively), we restricted to the set of genes with <1% 
of samples carrying a DEL, to estimate the parameters of the logis-
tic model. We then applied the fitted model to the full set of genes to 
calculate genic CNV intolerance scores as the residuals of the logistic 
regression of CNV frequency on the genomic features, standardized 
as z-scores and with winsorization of the lower 5th percentile.

Genome-wide estimation of deleterious variants
In order to estimate the relative numbers of deleterious SNV, indels, 
DELs and DUPs genome-wide in the normal population, we relied on 
a subset of 4,298 samples from the B38 callset for which we had joint 
variant callsets for both SNVs/indels (GATK) and SVs (lumpy/svtools). 
Each SNV and indel was annotated with CADD30 and LINSIGHT31 scores 
as described above. CADD and LINSIGHT scores were converted to 
percentiles and singleton rates calculated for variants above each score 
threshold. CADD and LINSIGHT scores were then calibrated to a stand-
ard scale by matching singleton rates. Each DEL and DUP was annotated 
with CADD and LINSIGHT scores, calculated as the mean of the top 10 
single-base CADD or LINSIGHT scores, respectively, for the span of the 
CNV (similar to SVSCORE63). The CNV-level CADD and LINSIGHT scores 
were then standardized using the above calibration curves. Finally, each 
variant (SNV, indel, or CNV) was assigned a combined CADD-LINSIGHT 
score, calculated as the maximum of the 2 distinct scores.

The combined scores provided a means to rank, within each variant 
class, variants in order of deleteriousness. We calculated the singleton 
rate for the set of all LOFTEE high confidence protein-truncating SNV 
and indels in autosomal genes. We then estimated the number of del-
eterious variants of each type genome-wide by choosing the combined 
CADD-LINSIGHT score threshold as the minimum value such that the 
singleton rate for the set of higher-scoring variants was greater than or 
equal to the singleton-rate for LOFTEE high-confidence PTVs.

Annotation of non-coding elements
We divided the genome into 1 kb non-overlapping windows to inves-
tigate the rates of CNV occurrence relative to various classes of cod-
ing and non-coding elements, genome-wide. Windows intersecting 
assembly gaps or high-copy number outlier regions (as described 
above) and windows with fewer than 50% of bases uniquely mappable 
as determined using GEM-mappability (build 1.315)64 were excluded 
from analysis. Bed tracks of genomic annotations for the non-coding 
dosage sensitivity analysis were created as described below.

The phastcons-20way65 conservation track was downloaded from the 
UCSC genome browser (rsync://hgdownload.cse.ucsc.edu/goldenPath/
hg38/phastCons20way/hg38.phastCons20way.wigFix.gz) and con-
verted to bed format. The mean phastcons score for each 1 kb window 
was calculated using bedtools map. Quantiles of mean window-level 
phastcons scores were calculated and used as thresholds for the sen-
sitivity analysis.

The LINSIGHT31 score track was downloaded from CSHL (http://
compgen.cshl.edu/~yihuang/tracks/LINSIGHT.bw). The 1kb genomic 
windows were lifted over to hg19 using crossmap (v0.2.1), annotated 
with mean per-window LINSIGHT scores using bedtools map and lifted 
back to GRChb38. Quantiles of mean window-level LINSIGHT scores 
were calculated and used as thresholds for the sensitivity analysis.

Genehancer52 enhancers were downloaded from GeneCards (https://
genecards.weizmann.ac.il/geneloc/index.shtml) and converted to 
bed format.

Vista51 enhancers were downloaded from LBL (https://enhancer.
lbl.gov/cgi-bin/imagedb3.pl?page_size=20000;show=1;search.resu
lt=yes;page=1;form=search;search.form=no;action=search;search.
sequence=1), restricted to human enhancers, converted to bed format 
and lifted over to GRChb38 using crossmap.
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Encode48 DNAse hypersensitivity sites and transcription factor bind-
ing sites were downloaded from UCSC (http://hgdownload.cse.ucsc.
edu/goldenPath/hg19/encodeDCC/wgEncodeRegDnaseClustered/
wgEncodeRegDnaseClusteredV3.bed.gz, http://hgdownload.cse.ucsc.
edu/goldenPath/hg19/encodeDCC/wgEncodeRegTfbsClustered/wgEn-
codeRegTfbsClusteredV3.bed.gz) and lifted over to GRCHb38 using 
crossmap.

Oreganno66 literature-curated enhancers were downloaded from 
UCSC (http://hgdownload.cse.ucsc.edu/goldenpath/hg19/database/
oreganno.txt.gz) converted to bed format, and lifted over to GRChb38 
using crossmap.

Sensitive50, transcription factor bound, ultra-conserved67, and HOT68 
regions were downloaded from the funseq269 resources (http://archive.
gersteinlab.org/funseq2.1.0_data).

Dragon enhancers were downloaded from DENdb70 (http://www.
cbrc.kaust.edu.sa/dendb/src/enhancers.csv.zip), converted to bed 
format, lifted over to GRChb37, and filtered for score>2.

Chromatin interaction domains derived from Hi-C on hESC and 
IMR90 cells71 were downloaded from http://compbio.med.harvard.
edu/modencode/webpage/hic/, and distances between adjacent topo-
logical domains calculated with bedtools. When the physical distance 
between adjacent topological domains was <400 kb, these were classi-
fied as TAD boundaries; otherwise, they were classified as unorganized 
chromatin. The TAD boundaries and unorganized chromatin data were 
converted to bed format and lifted over to GRCh38 using crossmap.

Roadmap chromatin state segmentations for 127 epigenomes were 
downloaded from Roadmap49 (https://egg2.wustl.edu/roadmap/data/
byFileType/chromhmmSegmentations/ChmmModels/coreMarks/
jointModel/final/) and lifted over to GRCh38. Bedtools multiinter was 
used to determine the number of epigenomes in which each segment 
was present.

Dosage sensitivity of non-coding elements
To maximize power, DEL and DUP calls from the non-redundant com-
bination of the B37 and B38 callsets (as described above) were used for 
this analysis. Each window was further characterized by its distance 
to the nearest exon (the minimum distance between any point in the 
window and any point in the exon) and the pLI score of the gene cor-
responding to the nearest exon. The pLI score was set to zero for genes 
with pLI undefined. In the event that exons of 2 genes were equidistant 
to the window, the max of the two pLI scores was selected.

For a given SV type (DUP or DEL) and a given functional annotation 
(e.g., VISTA enhancers), each window was characterized by the pres-
ence or absence of one or more SV and the presence or absence of one 
of more genomic features. We observed a depletion of CNV in windows 
near exons, and in particular near exons of LoF-intolerant genes (see 
Fig. 5a). As such, we used a Cochran-Mantel-Haenszel estimate of the 
odds ratios for each SV type/functional annotation, while stratifying for 
the proximity to the nearest exon as well as that exon’s LOF-intolerance 
(pLI). Because adjacent windows are not strictly independent observa-
tions – i.e., CNV or features may overlap adjacent windows inducing 
some spatial correlations – we used a block bootstrap method (resa-
mpling was performed on blocks of 10 windows) to estimate robust 
confidence intervals.

Long-read validation
PacBio long-read sequences from nine 1000 Genomes Project (1KG) 
samples sequenced to deep coverage (>68-87x) at the McDonnell 
Genome Institute were used as an orthogonal means of validating SV 
calls.These PacBio data are available in SRA (see accessions in Supple-
mentary Table 2) and were generated independently from the long-read 
data used by HGSVC to create the long-read SV callset used for sensitiv-
ity analyses described below27. The long-read sequences were aligned 
to GRCh38 using minimap272 (v2.16-r922; parameters -ax map-pb). 
Split-read alignments indicating putative SV were converted to BEDPE 

format56 as described previously23,24,73. Similarly, deletions or insertions 
longer than 50 bp contained within PacBio reads (as determined based 
on the cigar strings) were converted to BEDPE format. We used bedtools 
to judge the overlap between short-read SV calls and the long-read 
alignments. We judged an SV call to be validated when ≥2 long-reads 
exhibited split-read mappings in support of the SV call. For a long-read 
mapping to support an SV call, we required that it must predict a con-
sistent SV type (e.g., deletion) and exhibit substantial physical overlap 
with the SV call, where overlap can be met by either of the following 
criteria: (i) the two breakpoint intervals predicted by the SV call and 
the two breakpoint intervals predicted by the long-read split-read map-
ping overlap with each other on both sides, as determined by bedtools 
pairtopair using 100 bp of "slop" (-type -is both -slop 100); or (ii) the SV 
call and the long-read split-read (or cigar-derived indel variant) exhibit 
90% reciprocal overlap with one another (bedtools intersect -r -f 0.9). 
The above criteria for SV validation based on long-read support were 
selected based on extensive manual review of SV calls in the context of 
supporting data including read-depth profiles and long-read mappings 
from all 9 samples, and are the basis for the validation rates reported 
in the main text and in Supplementary Table 3. However, we also show 
the range of validation rates that are obtained when using more lenient 
or strict measures of physical overlap, and when requiring a varying 
number of supporting PacBio reads (Extended Data Fig. 5), in both car-
riers and non-carriers of SVs from various classes. We also note that 3 of 
the 6 singleton SV calls that are not validated by long-reads appear to 
be true variants based on manual review of read-level evidence, where 
it appears that long-reads failed to validate true short-read SV calls 
due to subtle differences in how coordinates were reported at local 
repeats. Our FDR estimates may be conservative due to these effects.

To conduct a comparison to HGSVC using the three samples 
shared between our datasets (NA19240, HG00514, HG00733), all 
non-reference, autosomal SV calls for each of the three samples were 
extracted from the CCDG B38 and HGSVC27 Illumina short-read callsets. 
For HGSVC variants detected solely by read-depth analysis, for which 
genotype information was not available, a variant was defined to be 
non-reference if its predicted copy-number differed from the mode for 
that site across the 9 samples in that callset (which includes the parents 
of NA19240, HG00514, and HG00733). The short-read calls from our 
study and HGSVC for the three relevant samples were converted to 
BEDPE format using svtools vcftobedpe. The 3 single-sample VCFs from 
the HGSVC PacBio long-read SV callset were converted to BEDPE format 
in similar fashion. For HGSVC Illumina calls (which had been taken from 
a callset comprising 3 only trios, rather than a large cohort) variants 
were classified as rare if seen in only 1 of the 6 trio founders and either 
absent from or observed at frequency <1% in the 1KG Phase3 SV callset.

Long-read SV truth set construction
In order to evaluate the sensitivity of our callset, we constructed a 
high-confidence truth set from the comprehensive HGSVC long-read 
SV callset created using reference-guided de novo assembly27. The 
assembly-based long-read truth set includes all autosomal SV reported 
by HGSVC27 that were also validated by split-read alignments from the 
PacBio data generated independently at our center. Here, an HGSVC call 
was judged to be validated by long-read data when 2 or more long reads 
exhibited split-read mappings or cigar-derived SV calls that match the 
HGSVC call in terms of the predicted SV type and breakpoint intervals, 
allowing 100 bp of "slop" to account for positional uncertainty (bed-
tools pairtopair -type -is both -slop 100). To account for the variant 
classification scheme of the HGSVC callset – which only has two variant 
categories, INS and DEL – we allowed INS variants to be validated by 
long-reads suggesting either insertion or tandem duplication variants. 
Variants were classified as STRs if either >50% of sequence from both 
reported breakpoint intervals or >50% of sequence contained in the 
outer span of the variant overlapped a GRCh38 track of simple repeats 
downloaded from the UCSC Table Browser. The interval spanned by 
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each variant was converted to bed format and lifted over to hg19 using 
crossmap. A combined CADD/LINSIGHT score was calculated for each 
variant based on the mean of the top 10 CADD-scoring and the mean 
of the top 10 LINSIGHT-scoring positions, as described in the section 
"Genome-wide estimation of deleterious variants" above.

Liftover of the 1000 Genomes Phase3 SV Callset
The 1KG Phase3 SV callset was lifted over from GRCh37 to GRCh38 
by first converting to BEDPE format using svtools vcftobedpe. The 
outer span of each variant was then converted to bed format and lifted 
over using crossmap61. For SVs that were not lifted over as contiguous 
intervals, discontiguous regions within 1 kb were merged using bed-
tools merge, and the largest of the merged variants were selected. The 
lifted-over bed interval was then converted back to BEDPE by padding 
each endpoint with 100 bp.

Assessment of sensitivity using the HGSVC long-read truth set
Sensitivity of the CCDG B38 and HGSVC Illumina short-read callsets 
to detect variants in the HGSVC long-read truth set was determined 
by converting each single-sample VCF to BEDPE format using svtools 
vcftobedpe and calculating overlaps using bedtools pairtopair, allow-
ing for 100 bp of "slop". For DEL calls, a variant was considered to be 
detected only if both breakpoints overlapped, and the type of the over-
lapping call was consistent with a deletion (i.e., DEL, MEI, CNV, or BND). 
For INS calls in the long-read callset, variants were considered detected 
if either breakpoint overlapped and the overlapping call was consistent 
with an insertion (i.e., DUP, INS, CNV, MEI, or BND).

Comparison with the 1KG Phase3 SV callset4 necessitated the use of 
a slightly different sensitivity metric, as 1KG analyzed the parents of 
HG00733 and NA19249, but not the trio offspring themselves. Since, 
with rare exception, germline variants present in the child should also 
be present in one of the two parents, the rate at which HGSVC long-read 
calls in the truth set were detected in at least one parent in each of the 
CCDG B38, HGSVC, and 1KG callsets serves as an informative alternate 
measure of "sensitivity".

Genotype comparison to 1KG
Genotype comparisons were performed for the 5 parental samples 
(NA19238, NA19239, HG00513, HG00731, and HG00732) present in 
both the CCDG B38 and the 1KG Phase3 SV callsets. Each callset was 
subset (using bcftools) to the set of autosomal SVs with a non-reference 
call in at least one of the 5 parental samples and converted to BEDPE 
format. Variants in the 1KG callset detected using read-depth methods 
only were excluded. Bedtools pairtopair (100 bp slop, overlap at both 
breakpoints) was used to determine the set of variants called in both 
the 5-sample CCDG callset and 5-sample 1KG callset, requiring consist-
ent SV type. For each variant site in each sample, genotypes from the 2 
callsets were compared. Results were tallied, and concordance rates 
and kappa statistics (‘irr’ package) were calculated in R.

CEPH pedigree analysis
Analyses of the three-generation CEPH pedigrees were performed on 
the set of 576 samples contained in the B37 callset that remained after 
excluding 21 samples that had been deemed low-quality and/or possibly 
contaminated based on analysis of a SNV/indel callset (A. Quinlan, Pers. 
Comm.). The remaining samples comprise 409 trios, which were used 
in the estimation of transmission rates. The counts of all high-quality 
SVs called heterozygous in one parent, homozygous reference in the 
other, and non-missing in the offspring were used to estimate transmis-
sion rates by frequency class, with Wilson score confidence intervals 
calculated using R binconf.

Mendelian errors for all high-quality (filter=PASS) SV were calcu-
lated using plink (v1.90b3.45), with the output restricted to variant-trio 
observations in which all 3 genotypes (father, mother, and offspring) 
were non-missing. For each sample in the third generation (the "F2"; 

see Supplementary Fig. 6a) of any of the CEPH kindreds, Mendelian 
errors were counted by frequency class. The Mendelian error rate was 
calculated as the total number of Mendelian errors divided by the total 
number of non-reference, non-missing genotypes in F2 generation 
samples for variants of that frequency class. "De novo" variants were 
defined as variants private to a single family where both parental geno-
types are 0/0 and the offspring genotype either 0/1 or 1/1, and were 
obtained by parsing the plink output. (Note that these variant counts 
are used as callset quality metrics and do not necessarily represent 
true de novo mutations.)

Transmission rates for putative de novo variants were calculated by 
restricting to all high-quality autosomal variants heterozygous in a 
second generation ("F1") sample and homozygous reference in both 
of his/her parents ("P0" generation) and his/her F1 spouse. Each such 
variant was classified as transmitted if carried by any F2 offspring, with 
transmission rates calculated as the number of transmitted variants 
out of the total. "Missed heterozygous calls" were counted as the set 
of all family-private variants non-reference in at least two F2 offspring 
siblings, but homozygous reference in both of the F1 parents. The rate 
of missed heterozygous calls was calculated by dividing this count 
by the total count of family private variants carried by at least two F2 
offspring siblings.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.

Data availability
The sequencing data can be accessed through dbGaP (https://www.
ncbi.nlm.nih.gov/gap) under accession numbers provided in Supple-
mentary Table 7. PacBio long read data used for SV validation can be 
accessed through SRA, under accession numbers provided in Supple-
mentary Table 2. The set of high-confidence HGSVC long-read derived 
SV calls, validated by our independent PacBio data and used as a truth 
set can be found in Supplementary File 3. Supplementary Files 1-4 can 
be found here: https://github.com/hall-lab/sv_paper_042020.

Code availability
Custom code used in the long-read validation can be found here: https://
github.com/abelhj/long-read-validation/tree/master
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Extended Data Fig. 1 | SV mapping pipeline. SV are detected within each 
sample using LUMPY. Breakpoint probability distributions are used to merge 
and refine the position of detected SV within a cohort, followed by parallelized 
re-genotyping, and copy number annotation. Samples are merged into a single 

cohort-level VCF file, variant types reclassified, and genotypes refined with 
svtools using the combined breakpoint genotype and read-depth information. 
Finally, sample-level QC and variant confidence scoring is conducted to 
produce the final callset.ACCELE
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Extended Data Fig. 2 | The B37 callset. (a) Variant counts (y-axis) for each 
sample (x-axis) in the callset, ordered by cohort, where large (>1 kb) variants are 
shown in dark shades and smaller variants in light shades. (b) Variant counts 
per sample, where samples are ordered by self-reported ancestry according to 
the color scheme at right, using the abbreviations described in Supplementary 
Table 1. Note that African-ancestry samples show more variant calls, as 
expected. (c) Table showing the number of variant calls by variant and 

frequency class, and Mendelian error rate by variant type. (d) Histogram of 
allele count for each variant class, showing alleles with counts ≤100. (e) Linkage 
disequilibrium of each variant class as represented by max R2 value to nearby 
SNVs, for N=1581 samples. Note that these distributions mirror those from our 
prior SV callset for GTEx3, which was characterized extensively in the context of 
eQTLs.
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | The B38 callset. (a) Variant counts (y-axis) for each 
sample (x-axis) in the callset, ordered by cohort (separated by vertical lines), 
where large (>1 kb) variants are shown in dark shades and smaller variants in 
light shades. (b) Variant counts per sample, where samples are ordered by self-
reported ancestry according to the color scheme at right, using the 
abbreviations described in Supplementary Table 1. Note that African-ancestry 
samples show more variant calls, as expected. Note also that there is some 
residual variability in variant counts due to differences in data from each 
sequencing center, but that this is mainly limited to small tandem duplications 
(see part a), primarily at STRs. (c) SV length distribution by variant class (d) 
Distribution of the number of singleton SVs detected in samples from different 
ancestry groups according to the abbreviations in Supplementary Table 1. Only 
groups with ≥1,000 samples in the B38 callset are shown, and each group was 
subsampled down to 1,000 individuals prior to allele frequency re-calculation. 

(e) Histogram showing the resolution of SV breakpoint calls, as defined by the 
length of the 95% confidence interval of the breakpoint-containing region 
defined by LUMPY, after cross-sample merging and refinement using svtools. 
Data are from N=360,614 breakpoints, 2 per variant. (f) Distribution of the 
number of SVs detected per sample in WGS data from each sequencing center 
(x-axis) for African and non-African samples, showing all variants (left), and 
those larger (middle) and smaller (right) than 1 kb in size. Per-center counts are 
as follows: Center A (1527 AFR, 2080 Non-AFR), Center B (408 AFR, 2745 Non-
AFR), Center C (2953 AFR, 2226 Non-AFR), Center D (150 AFR, 2534 Non-AFR). 
(g) Plots of Mendelian error (ME) rate (y-axis) by mean sample quality (MSQ) for 
each variant class, where dot size is determined by point density (see right) and 
the threshold used to determine high and low confidence SVs is shown by the 
vertical lines. All boxplots indicate the medians and first and third quartiles; 
whiskers extend 1.5 times the interquartile distance.
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Extended Data Fig. 4 | Principal components analysis for the B37 callset. 
PCA were calculated using an LD-pruned subset of high-confidence DEL and 
MEI variants, with MAF>1%. Ancestry is based on self-report, using the color 

scheme at right, using the ancestry abbreviations described in Extended Data 
Table 1.
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Extended Data Fig. 5 | Validation of SV calls (N=9,905 variants) by PacBio 
long reads in 9 control samples. (a) Validation rates in variant carriers (y-axis) 
vs. validation rates in non-carriers (i.e., false validations; x-axis) for each 
method of determining variant overlap, for a range of supporting read count 
thresholds. Singleton variants (N=133) are shown separately at right. For each 
variant overlap method (see legend), each data point represents a distinct read 
count threshold (≥1, 2, 3, 5, 10, 15, or 20 PacBio reads) used to determine 
validation of SV calls by long-read alignments. Two methods were for 
determining overlap between SV coordinates and long-read alignments while 
accounting for positional uncertainty: (i) bedtools pairtopair requiring overlap 
between the pair of breakpoint intervals predicted by short-read SV mapping 
and the pair of breakpoint intervals predicted by long-read alignment, allowing 

100 bp or 200 bp of "slop"; and (ii) bedtools intersect requiring 90% or 95% 
reciprocal overlap between the coordinates spanned by the SV predicted by 
short-read SV mapping and the SV predicted by long-read alignment. Here, we 
plot the first criteria by themselves, and in pairwise combination with the latter 
(see legend at right). Note that Supplementary Table 3 is based on the "100 bp 
slop or 90% reciprocal overlap" method, requiring ≥2 PacBio reads.  
(b) Validation rates by frequency class for variant carriers and non-carriers with 
increasing PacBio supporting read thresholds are shown using the same 
overlap method as in Supplementary Table 3. Variant counts per frequency 
class are as follows: singleton (N=133), rare (N=734), low frequency (N=1,361), 
and common (N=7,677).
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Extended Data Fig. 6 | Mendelian inheritance analysis in a set of 
3-generation CEPH pedigrees comprising 409 parent-offspring trios.  
(a) Example structure of a single CEPH pedigree indicating nomenclature of the 
parental (P0), first (F1) and second generation (F2). (b) Transmission rate of SVs 
from different allele frequency classes including SVs that are private to a single 

family (private), rare (<1%), low-frequency ("low"; 1-5%) and common (>5%).  
(c) Table showing the number and rate of Mendelian errors by allele frequency 
class. (d) Table showing the number and rate of Mendelian errors for SVs 
private to a single family, for each SV type.
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Extended Data Fig. 7 | Comparison of SV calls and genotypes to the 1000 
Genomes (1KG) Phase3 callset4. (a) number of known and novel SVs in the B37 
(left) and B38 (right) callsets, shown by frequency class. (b) Table showing the 
genotypes reported in our B38 (rows) callset versus 1KG (columns) at SVs 
identified by both studies among the five samples included in both callsets.  
(c) Table showing genotype concordance by SV type including the fraction of 
concordant calls and Cohen's Kappa coefficient. (d) Distribution of correlation 

(R2) between genotype (GT) information determined by breakpoint-spanning 
reads and copy number (CN) estimates determined by read-depth analysis for 
the SVs shown in parts (b) and (c), when genotype information between the B38 
and 1KG callset are concordant (left) or discordant (middle, right). At sites with 
discordant genotypes, correlation with copy number information is typically 
higher for genotypes from the B38 callset (middle) than the 1KG callset (right).
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Extended Data Fig. 8 | Ultra-rare SVs in the B38 callset (N=14,623).  
(a) Histogram showing the number of ultra-rare SVs per individual, where 
ultra-rare is defined as "singleton" variants private to single individual or 

nuclear family. (b) Histogram showing the number of genes affected by 
ultra-rare SVs larger than 1 Mb in size.
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Extended Data Fig. 9 | Correlations between dosage sensitivity scores for 
CNV in the combined callset (N=17,795). (a) Results for deletion variants. 
"ExAC score" is the published ExAC DEL intolerance score46. "CCDG score" is 
similarly calculated from our data, using CCDG deletions. "pLI" is the published 
loss-of-function intolerance score from ExAC28. "HI.Z" is the negative of the 
inverse-normal transformed haploinsufficiency score from DECIPHER47.  

"Ave.ccdg.exac" is the arithmetic mean of the CCDG and ExAC DEL intolerance 
scores. "Ave.ccdg.hi" is the arithmetic mean of the CCDG and HI-Z scores. 
Correlations shown are Spearman rank correlations (rho), p-values are from the 
2-sided spearman rank correlation test, N represents the number of genes 
included in the test. (b) Results for duplication variants, using the same naming 
conventions as in part (a).
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Extended Data Table 1 | (a) Ancestry, (b) ethnicity, and (c) continental origin of the samples analyzed in this study

For each table, the number of samples in the B37 and B38 callsets are shown separately, including the non-redundant combined set at right. Abbreviations are as follows: AFR, African; AMR, 
admixed American; EAS, east Asian; FE, Finnish European; NFE, non-Finnish European; PI, Pacific Islander; SAS, South Asian.
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Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection no software was used

Data analysis All sequence data were aligned and processed as described in the methods section.  For the 'b37' callset, data were processed using the 
speedseq pipline.  For the 'b38' callset data were processed according to the functional equivalence standard. We used LUMPY (v0.2.13) 
for per-sample SV calling followed by cohort-level merging, re-genotyping, etc, using the svtools (v0.3.2) workflow as detailed in the 
Methods section to produce a joint, cohort-level vcf. Dataset qc was performed using bcftools (v1.3.1) and  vawk (https://github.com/
cc2qe/vawk).  The SNV/indel callset was produced using GATK HaplotypeCaller (v3.5-0-g36282e4)  as detailed in the methods and  
annotated using vep and LOFTEE (v0.2.2-beta).  Validation of SV by PacBio long reads was performed using custom code in (https://
github.com/abelhj/long-read-validation/tree/master).  All further analysese were performed using bedtools (v2.23.0) and R (v3.3.3).

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers. 
We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

The sequencing data can be accessed through dbGaP (https://www.ncbi.nlm.nih.gov/gap) under accession numbers provided in Supplemental Table 7.  PacBio long 
read data used for SV validation can be accessed through SRA, under accession numbers provided in Supplemental Table 2.  The set of high-confidence HGSVC long-
read derived SV calls, validated by our independent PacBio data and used as a truth set can be found in Supplementary_File4. 
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Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size Sample size was determined based on the number of distinct individuals in the callsets.

Data exclusions As detailed in the Methods sections, samples with per-sample variant counts of any type exceeding the median+6*MAD were excluded (per 
our standard qc practice).  A set of 64 samples were excluded because they appeared to be duplicates (or monozygotic twins) of other 
samples in the callset.  (One per duplicate pair was excluded at random.)   Additional samples were excluded because we could not obtain 
consent for aggregate sharing.  (See methods for details.)

Replication This was an observational study, there was no attempt at replication.

Randomization This was an observational study, there was no randomization.

Blinding This was an observational study, there was no blinding.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 
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