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Genetic regulatory effects modified by immune
activation contribute to autoimmune disease
associations
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Nicholas Giangreco2, Jessica Becker3,4, Vera Kaiser5, Nadine Fricker3,4, Esther Beier5, Peter Boor 9,

Stephane E. Castel1,2, Markus M. Nöthen3,4, Luis B. Barreiro7,10, Joseph K. Pickrell1,11,

Bertram Müller-Myhsok6,12,13, Tuuli Lappalainen1,2, Johannes Schumacher3,4 & Veit Hornung5,14,15

The immune system plays a major role in human health and disease, and understanding

genetic causes of interindividual variability of immune responses is vital. Here, we

isolate monocytes from 134 genotyped individuals, stimulate these cells with three defined

microbe-associated molecular patterns (LPS, MDP, and 5′-ppp-dsRNA), and profile the

transcriptomes at three time points. Mapping expression quantitative trait loci (eQTL),

we identify 417 response eQTLs (reQTLs) with varying effects between conditions.

We characterize the dynamics of genetic regulation on early and late immune response and

observe an enrichment of reQTLs in distal cis-regulatory elements. In addition, reQTLs are

enriched for recent positive selection with an evolutionary trend towards enhanced immune

response. Finally, we uncover reQTL effects in multiple GWAS loci and show a stronger

enrichment for response than constant eQTLs in GWAS signals of several autoimmune

diseases. This demonstrates the importance of infectious stimuli in modifying genetic

predisposition to disease.
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The human immune system plays an important role in
host protection, autoimmune and inflammatory diseases,
cancer, metabolism, and ageing. Given this central role

in many human pathologies, it is crucial to understand the
variability of immune responses at the population level and how
this variability relates to disease susceptibility. Studying the
genetic influence on immune response is complicated by
the complexity of the immune system, which consists of many
different cell types that respond to a plethora of signals, interact
with each other and induce different effector functions under
diverse kinetics1–5.

An increasingly popular approach to identifying genetic factors
influencing the interindividual variation in immune response is to
map expression quantitative trait loci (eQTLs) —variants that
associate with gene expression—and to identify so-called
response eQTLs (reQTLs) where the eQTL effect differs
between immune stimuli. Such genetic variants can impact the
transcriptional response to infection, and also represent genetic
effects that are modified by the infectious environment via
gene-by-environment interactions. We and other groups have
previously published reQTL studies of stimulated immune cells
and demonstrated that the effects of a genetic variant on
gene expression are highly context-specific and informative
for disease6–11. However, given the complexity of the immune
system, additional work is needed to illuminate the genetic
influence on many aspects of the immune system. For instance,
reQTLs of certain pattern recognition receptor (PRR) families
such as NOD-like receptors using purified microbial ligands have
not been studied yet, and thus far the dynamics of immune
reQTLs have only been explored in LPS-treated cells9.

Building on our previous study of baseline and LPS-stimulated
monocytes6, we address these gaps by studying functional genetic
variants in monocytes activated with microbial ligands for three
different PRR families at two different time points. We identify
context-specific reQTLs and describe their specificity for time
point and treatment. In addition, we analyze differences in
reQTLs and constant eQTLs in terms of their genetic architecture
and contribution to explain GWAS loci. Finally, we describe
reQTLs that shed light on the pathogenesis of immune-mediated
diseases. Collectively, these results improve our understanding
of the complexity of genetic regulation of the immune system.
We provide a user-friendly access to our results via the
ImmunPop QTL browser (http://immunpop.com/kim/eQTL).

Results
Expression profiling of innate immune responses. To examine
the time course of innate immune responses, we first profiled
gene expression in monocytes of five individuals using
Human HT-12 v4 Expression BeadChips (Illumina) at six
time points after stimulation with three prototypical microbial
ligands: Lipopolysaccharide (LPS) was used to activate Toll-like
receptor 4 (TLR4), muramyl-dipeptide (MDP) to stimulate
Nucleotide-binding oligomerization domain-containing protein 2
(NOD2), and 5′-triphosphate RNA (RNA) to activate
retinoic acid-inducible gene I (RIG-I). Hierarchical clustering
revealed early differentially expressed (DE) genes at 45
and 90 min after stimulation and late DE genes between 3 and
24 h (Supplementary Fig. 1). For the full eQTL cohort,
we analyzed primary monocytes isolated from 134 healthy
male individuals (185 before quality control), which were
either left untreated (baseline) or stimulated with the
same three pathogen-derived stimuli, and gene expression was
profiled after 90 min and 6 h. All donors were SNP-genotyped
using Illumina HumanOmniExpress BeadChips (Fig. 1a).
In a previous study6, we have analyzed a subset of these data
consisting of baseline and 90 min LPS-stimulated monocytes in
this cohort.

First, we studied the gene expression response to immune
stimulation. Principal component analysis of the gene expression
data identified seven distinct groups corresponding to each
treatment and time point (Supplementary Fig. 2). Differential
expression analysis of genes expressed in at least one of the seven
conditions showed the highest number of DE genes under late
LPS response, and lowest under early RNA stimulation
(Supplementary Fig. 3, Supplementary Data 1). These genes form
six clusters with similar response patterns across time points
and conditions (Fig. 1b, Supplementary Data 1), and with
gene ontology (GO) enrichments corresponding to relevant
immunological pathways (Supplementary Data 1). Furthermore,
immune responsive genes showed a significantly greater and
more diverse distribution of interindividual variance than all
expressed genes, already at baseline and with a further increase
upon stimulation (Supplementary Fig. 4). These analyses of gene
expression patterns in a population scale provide a highly robust
and comprehensive data set of innate immune responses and
their interindividual variation upon diverse microbial ligands and
multiple time points.
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Fig. 1 Overview of the eQTL study and transcriptional immune response in primary human monocytes. a Step-wise experimental design to identify genetic
effects on immune response in human monocytes. (1) Isolation and stimulation of primary monocytes from 134 individuals, (2) Transcriptome
measurement of the entire cohort at two time points (90min and 6 h) after stimulation, (3) Genotype profiling to map immune response eQTLs. b Mean
mRNA profiles of differentially expressed genes (log2-fold change> 1, FDR 0.001) of 134 individuals between baseline and each of the six stimulated
conditions. Genes are hierarchically clustered into six distinct expression patterns (Supplementary Data 1 for a full list of the differential expression and
enriched pathways of each cluster)
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Fig. 2 Immune response eQTL study in human monocytes. a Total numbers of cis eQTLs and proportions of reQTLs of LPS-treated (LPS),
5′-ppp-dsRNA (RNA) and MDP-treated (MDP) monocytes at 90min and 6 h after stimulation. Results of the analysis of 134 individuals are shown unless
indicated otherwise. eQTLs include all genes with a significant genetic association in each stimulated condition, and reQTLs are a subset that show a
significant difference of the regression slope between untreated and stimulated monocytes, with violin plots shown as examples. The untreated condition
has 1653 eQTLs that are not shown in the bar plot. b Numbers of reQTLs and proportions of treatment-specific reQTLs where the regression slope of the
tested treatment is different from the slope of the other two treatments within the same time point, with violin plots shown as examples and the color of bar
indicating the treatment that was tested. c Numbers of reQTLs and proportions of time point-specific reQTLs where the regression slope of the tested time
point is different from the slope of the other time point within the same treatment, with violin plots shown as examples. d reQTLs were divided into six
subsets according to their temporal activity (see Methods section). Average of absolute eQTL effect sizes per category is shown on the left panel. The
middle panel illustrates a reQTL example with congruent differential expression (DE) (dashed line) or non-congruent DE (dotted line) of the eGene. reQTL
distribution to different categories is shown in the right panel, where the shaded portion illustrates the proportion of reQTLs with congruent DE of the eGene
and asterisks represent the significance of enrichment of reQTLs with congruent DE of the eGene (Fisher’s exact test *p<0.05). The p-values above the bars
indicate the significance between of active and suppressive types (binomial test)
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Dynamics of immune response eQTLs. In order to study genetic
variation influencing gene expression levels, we performed eQTL
mapping for all seven conditions, defining cis eQTLs within a
1-Mb interval on either side of an expression probe at a false
discovery rate (FDR) of 5%. We identified 717–1653 genes with
an eQTL in each condition (Fig. 2a, Supplementary Data 2).
The eQTLs from conditions analyzed in previous studies8, 9 had a
high degree of replication, demonstrating the robustness of
our data set (Supplementary Fig. 5a; Methods). We provide a
user-friendly access to our results via the ImmunPop QTL
browser (http://immunpop.com/kim/eQTL).

To identify eQTLs that differ between stimuli, we used a
beta-comparison approach, comparing the regression slopes of

an eQTL under baseline (βbaseline) vs stimulated (e.g., βLPS90min)
in a z-test, with reQTLs defined as having Bonferroni corrected
p< 0.05 (see Methods section). This approach is highly consistent
with a previously used method6, 8, 10 where differential expression
is used as the quantitative trait (Supplementary Fig. 5b), but
provides more flexibility for comparing several conditions.
This analysis revealed that 3–18% of our cis eQTLs in each
condition are reQTLs (Fig. 2a, Supplementary Data 2). Of note,
reQTLs with clearly opposite directional effect when comparing
different treatment conditions were not observed (Supplementary
Fig. 5c). Genes with a reQTL showed GO enrichment in immune
pathways (Supplementary Fig. 6a), and include key genes of
protein–protein interaction networks such as MAP kinases,
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IRF transcription factors, chemokines, and chemokine receptors
(Supplementary Fig. 6b, c, d), demonstrating the relevance of
genetic interindividual variation in the innate immune system.

Next, to analyze treatment and time point specificity of
reQTLs, we performed pairwise comparisons of regression slopes
across treatments and time points, respectively. This revealed that
13–51% of reQTLs were treatment-specific when compared with
the other two stimuli of the same time point, with marked
differences depending on which stimulus-pair was tested (Fig. 2b).
We also observed a large proportion of time point-specific
reQTLs (32–64%) suggesting a highly dynamic genetic regulation
in immune response (Fig. 2c). Of note, the number of identified
reQTLs per condition, as well as time point- and stimulus-specific
reQTLs, were correlated with the number of differentially
expressed genes (Supplementary Fig. 7a, b). Thus, differential
expression analysis in a small number of samples can be used to
select the conditions that maximize reQTL discovery in a
population-scale study.

To obtain better insight into the dynamic link between reQTLs
and differential expression upon immune stimulation, we
classified reQTLs into those with early transient, late, and
prolonged effects (see Methods section). We find that active
reQTLs, reQTLs that are absent at baseline and active under
stimulation, are more common and have higher effect sizes than
suppressive reQTLs, reQTLs that lose their baseline eQTL effect
under stimulation (Fig. 2d, Supplementary Fig. 7c). Interestingly,
active reQTLs are typically more dynamic showing early transient
or late effects, whereas suppressive reQTLs are more often
prolonged, extending over both time points. Next, we analyzed
whether the temporal dynamics of reQTLs correspond to the
dynamics of differential expression. A highly congruent pattern
would indicate a major role of genetic interindividual variation in
reQTL genes across the gene’s temporal response to a stimulus,
whereas divergent patterns could suggest recruitment of
additional expression response mechanisms independent of the
regulatory effect of the reQTL variant. The proportion of reQTL
genes with congruent differential expression ranged between 30
and 87% for different classes of dynamic reQTLs (Fig. 2d,
Supplementary Fig. 7d, Methods section) with significant
enrichment of congruent pattern in 4 out of 6 groups (p< 0.05
in Fisher’s exact test of each group vs all others). This indicates
that reQTLs are relevant regulators of differential expression but
additional regulatory mechanisms are involved in shaping
the transcriptional response of reQTL genes. Altogether,
our analysis of temporal reQTLs sheds light on mechanisms of
the highly dynamic immune response, and the role of genetic
variants in it.

Functional mechanisms and evolution of reQTL variants.
To further characterize the genetic variants underlying the
total of 417 reQTLs across all treatment conditions, we defined
a set of 677 constant eQTLs (ceQTLs). These ceQTLs
displayed no change in regression slope across all conditions
(nominal p> 0.05) (Fig. 3a, Supplementary Fig. 8a) and genes
with a ceQTL showed GO enrichment predominantly in
metabolic processes (Supplementary Fig. 8b). Functional
annotation enrichment and fine mapping analyses by fgwas12

revealed that reQTLs were more enriched in promoter-flanking
regions, CTCF binding sites and enhancer regions, while constant
eQTLs were more common in promoter regions, 3′ and 5′
untranslated regions, and regions downstream of transcription
start sites (Fig. 3b, Supplementary Fig. 8c). While reQTL
enrichment has been previously described for some transcription
factors10, 11, and annotations of condition-specific epigenomic
marks and tissue-specific eQTLs have been described13, 14,

our results are to our knowledge the first demonstration
of environmentally responsive eQTLs being enriched in distal
cis-regulatory elements.

Given that the innate immune system is the first line of defense
in the early interaction between the host and the microbe,
we asked whether selective pressures that are exerted by
microorganisms on the host genome can be detected in reQTLs.
Consistent with previous reports10, 11, we detected a signal of
increased positive selection in eQTLs, ceQTLs, and reQTLs using
the integrated haplotype score15 (iHS; permutation test p< 10−4,
Fig. 3c, left panel) and the singleton density score16

(SDS; permutation test p< 10−4, Fig. 3c, right panel), comparing
each eQTL class to a genome-wide null set of variants matched
for minor allele frequency (MAF) and linkage disequilibrium
(LD). Next, we examined the direction of the effect of the derived
allele, dividing reQTLs into two groups (Fig. 3d): (1) reQTLs
where the derived allele causes an increase in response amplitude
compared with the ancestral allele (e.g., ancestrally upregulated
genes are further upregulated among derived allele carriers), and
(2) reQTLs where the derived allele causes weakening or even
silencing of immune response compared with the ancestral allele.
Interestingly, across all treatments the reQTLs with stronger
expression response by the derived allele were more common
(binomial p= 0.011 across all conditions; Fig. 3e, Supplementary
Fig. 9). This suggests an evolutionary trend toward enhanced
immune response, which might reflect an arms race of the host
immune system and invading pathogens.

Immune response modifies genetic associations to disease.
Given the central role of inflammation in many diseases, we
examined reQTLs as a potential mechanism underlying genetic
associations to complex diseases, discovered by genome-wide
association studies (GWAS). First, we identified individual
GWAS loci that are likely to share a causal variant with an reQTL
in the same locus. We used the coloc17 method on summary
statistics of 33 GWAS traits (Supplementary Data 3) and our
reQTL data. This analysis provided four loci with strong evidence
(PP3 + PP4≥ 0.90 and PP4/PP3≥ 3) of reQTLs sharing the same
causal variant with a GWAS trait (Fig. 4a, b and Supplementary
Data 3). In the chromosome 9 locus associated with HDL18 and
total cholesterol levels18, the eQTL effect for TTC39B can be
detected at baseline levels, but the increasing effect size upon
immune stimulation indicates a possible novel immunological
component of TTC39B’s role in the etiology of atherosclerosis.
In the IL18R1 locus associated with celiac disease19 (Fig. 4a) and
the KLF6 locus associated with schizophrenia20 (Fig. 4b), the
eQTL effects are only present under immune stimulation and
would not be discovered in baseline monocytes. Conversely, in
the RNMD1 locus associated with age at menarche21, the baseline
eQTL effect is diminished upon immune activation. As summary
statistics are only available for the minority of GWAS traits, we
also identified 29 reQTL genes for which the top variant is in high
LD (r2> 0.8) with a disease-associated SNP listed in the GWAS
catalog22 (Fig. 4c, Supplementary Data 4), which may
indicate shared causal variants, albeit with less certainty than
coloc analysis. For ten of these reQTL genes the eQTL was absent
under baseline condition (pbaseline> 0.01), including reQTL genes
such as APOL2 potentially associated with glomerulosclerosis,
PTGER4 with allergy, and PIP4K2A with acute lymphoblastic
leukemia. These results do not exclude other possible
mechanisms in other cell types or conditions, but the reQTL
analysis discovers potential causal genes for individual GWAS
loci with an effect that is potentially modified by infections.

Finally, to quantify the role of reQTLs in the genome-wide
genetic architecture of different complex traits, we analyzed the
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enrichment of reQTLs and ceQTLs in GWAS signals of eleven
autoimmune traits (Supplementary Data 3) using fgwas (Fig. 4d,
Supplementary Fig. 10a), confirmed by Q–Q plots (Fig. 4d,
Supplementary Fig. 10b) analogous to Li et al.23. Interestingly, in
seven out of eleven traits reQTLs had a significant enrichment,
whereas ceQTLs were enriched in only three of these seven traits,
and narcolepsy (NAR) was the only trait significantly enriched for
ceQTLs but not for reQTLs. Most notably, systemic lupus
erythematosus (SLE) GWAS signals24 were very strongly and
significantly enriched among reQTLs with no enrichment in
ceQTLs, suggesting that the innate immune response to
pathogens may be a particularly important environmental
modifier of genetic predisposition to SLE, while possibly playing
a smaller role in the genetic architecture of e.g. psoriasis and type
1 diabetes. Even though fgwas analysis for multiple sclerosis (MS)
did not show stronger enrichment of reQTLs over ceQTLs, the
inflation of reQTLs in the QQ plot of MS advocates the
importance of immune response genes in the etiology of MS
(Supplementary Fig. 10). While some non-autoimmune traits
showed an eQTL enrichment, there was no significant differential
enrichment between reQTLs and ceQTLs (Supplementary Fig. 11,
Supplementary Fig. 12). These results indicate a substantial,
disease-specific role of environmental interactions with microbial
ligands in genetic risk to complex autoimmune diseases. While
tissue specificity of molecular effects of GWAS variants is
increasingly appreciated and analyzed14, our results suggest that
innate immune stimulation is a key cellular state to consider in
future eQTL studies as well as in targeted functional follow-up of
GWAS loci.

Discussion
In this study, we analyzed the interindividual variability of
immune response in activated monocytes and characterized
genetic variants that influence the response to pathogen compo-
nents. Unlike previous studies, we analyze reQTLs using various
ligands under multiple time points, and provide a more
comprehensive picture of the role of genetic variation in innate
immunity. Our analysis sheds light on the dynamics of immune
response and reQTLs, the genomic elements underlying cis
eQTLs responding to environmental stimuli, the evolution of
immune response, and the key role of immune activation as a
modifier of genetic effects especially in autoimmune diseases.

Several important aspects of genetic regulatory variants
affecting transcriptional immune response remain to be
addressed by other studies. RNA-sequencing allows increased
power and identification of splicing QTLs10, 23, 25, and additional
epigenomic assays can provide insight into genomic mechanisms
of transcriptome response26. Increasing sample sizes would
provide better power and allow exploration into rare cis-eQTL
variants27, 28 and comprehensive trans eQTL mapping. Finally,
while our study includes more immune stimuli and time
points than previous analyses, it is essential to further expand the
number of conditions and cell types involved in innate and
adaptive immunity in reQTL studies, and advance their joint
analysis. The ImmunPop QTL browser that includes our data
provides a step toward this direction.

Taken together, our comprehensive characterization of reQTLs
provide novel insights into the genetic contribution to
interindividual variability and its consequences on immune-
mediated diseases. These results support a model where genetic
risk for disease can sometimes be driven not by static and
uniform malfunction but rather by failure to respond properly to
an environmental stimulus. This emphasizes the importance of
context-specific genetic regulation in human traits.

Methods
Pilot study. To assess the dynamics of immune response in human monocytes, we
measured mRNA expression over a detailed time course of 45 min, 90 min, 3 h, 6 h,
12 h and 24 h following stimulation with 200 ng/ml ultrapure LPS from Escherichia
coli (Invivogen), 100 ng/ml L18-MDP (Invivogen) or 200 ng in vitro transcribed
5′-ppp-dsRNA transfected with Lipofectamine 2000. These microbial ligands target
three distinct pattern recognition receptor families and were chosen to study a
broad spectrum of innate immune response in human monocyte. Differential
expression analysis showed that early response genes are well captured at 90 min
after stimulation followed by a “second” wave of late response genes that plateaued
between 6 and 24 h after stimulation. Based on this pilot study, we profiled mRNA
expression at 90 min and 6 h after stimulation in the larger eQTL cohort.

Sample collection and stimulation of CD14+ monocytes. In total, 185 healthy
male volunteers of German descent were recruited. The study was approved by
the institutional review board of the University of Bonn and informed consent was
obtained from all donors. All volunteers were between age 18 and 35 (mean 24).
Peripheral blood mononuclear cells (PBMC) were obtained by Ficoll-Hypaque
density gradient centrifugation of heparinized blood. Monocytes were isolated by
MACS using CD14-microbeads (Miltenyi Biotec) according to the manufacturer’s
instructions. Cell purity was assessed by FACS analysis of cell-surface antigens with
a FACS LSRII (BD Biosciences). Monocytes were stained with an antibody against
CD14 (V450 Mouse Anti-Human CD14 clone MφP9, BD Biosciences, catalog
number 560349, 1:50 dilution) and purity was≥ 95%. RPMI 1640 (Biochrom)
supplemented with 10% heat-inactivated FCS (Invitrogen), 1.5 mM L-glutamine,
100 U/ml penicillin, 100 µg/ml streptomycin (all Sigma-Aldrich) and 10 ng/ml
GM-CSF (ImmunoTools) was used to culture cells in 96-well round bottom
wells at a density of 250,000 cells per well in 100 µl overnight. Cell viability after
overnight incubation was> 85%. Cells of each volunteer were divided into subsets
that were either left untreated or treated with 200 ng/ml ultrapure LPS from
Escherichia coli (Invivogen), 100 ng/ml L18-MDP (Invivogen) or 200 ng in vitro
transcribed 5′-ppp-dsRNA (IVT4) transfected with 0.5 µl Lipofectamine 2000 in a
50 µl reaction. Based on the pilot study described in Supplementary Fig. 1 and in
the Methods section, cells were lysed in RLT reagent (Qiagen) after 90 min or 6 h
and stored at −80°C. C-reactive protein (CRP) levels were measured to exclude
samples with elevated CRP levels. After applying stringent quality control and
clinical exclusion criteria (Non-smoker, no infection or vaccination 4 weeks prior
to blood withdrawal, CRP< 2.5 mg/dl, monocyte purity≥ 95%, monocyte survival
> 85%), samples from 134 individuals were further processed.

RNA extraction. After stimulation cells were lysed and RNA was extracted using
the AllPrep 96 DNA/RNA Kit (Qiagen). RNA quantity was determined using
NanoDrop (PeqLab) and quality was assessed for a subset of samples using a
Bioanalyzer (Agilent Technologies).

Gene expression analysis. RNA was amplified and biotinylated using Illumina
TotalPrep-96 RNA Amplification Kit (Life Technologies) and gene expression
analysis was quantified using Human HT-12 v4 Expression BeadChips (Illumina)
comprising 47,231 probes. Expression profiles were quantile normalized, and only
probes which showed a pdetection< 0.01 in at least 10 samples across all conditions
were analyzed. Batch effects were removed using the R packages ComBat29 and
sva30. Probes with an interindividual standard deviation> 5 were set to NA. Probes
found to map to multiple locations in the human genome or to non-autosomal
chromosomes were not used. In addition, probes with SNPs that showed an eQTL
effect on the respective gene were excluded, resulting in 18,988 probes (13,207
genes) for further statistical analyses.

To determine the number of differentially expressed genes, the probe with the
best pdetection across all conditions was used and differential expression (log2-fold
change> 1, FDR 0.001) was computed using the linear modeling-based approach
implemented in the Bioconductor limma package31. Genes differentially expressed
in at least one condition were grouped into six distinct clusters corresponding to
genes with similar response pattern using hierarchical clustering. Over
representation of Gene Ontology terms in these clusters of differentially expressed
genes were assessed using hypergeometric-based tests implemented in the R
package GOstats32. Genes that were expressed in our monocyte data were used as
background set in all enrichment analyses. Only enrichments significant at FDR of
0.05 are reported in Supplementary Data 1.

DNA extraction. Genomic DNA was extracted from 10 ml blood using
Chemagic Magnetic Separation Module I (PerkinElmer Chemagen) according to
the manufacturer’s instructions. DNA was quantified by NanoDrop (PeqLab).

DNA genotyping and imputation. Genotyping was conducted on the Illumina’s
HumanOmniExpress BeadChips comprising 730,525 SNPs. After quality control
(pHWE> 10–5, call rate > 98%, MAF> 5%), a total of 579,090 SNPs were available
for analysis. Samples showing potential admixture within the multi-dimensional
scaling (MDS) analysis were removed. All samples showed a call rate> 99%.

Genotypes were phased with SHAPEIT233 and imputed with IMPUTE234 in 5
Mb chunks against the 1000 genomes phase 1 v3 reference panel35. Sites with an
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information score of less than 0.8 or significant departure from Hardy–Weinberg
equilibrium (p< 10−5) or MAF < 5% were excluded from further analysis.
Genotype probabilities for all remaining sites were converted into dosage estimates.

eQTL analysis. As quantitative phenotypes, we used absolute expression values
of untreated (baseline), LPS-treated (LPS), 5′-ppp-dsRNA (RNA), and
MDP-treated (MDP) cells. Complete expression profiles of each of the seven
conditions (baseline, LPS90min, LPS6h, RNA90min, RNA6h, MDP90min,
MDP6h) were available for 134 donors. eQTL mapping was performed for SNPs
located within 1 Mb of the gene expression probe using FastQTL36. Significance
of the most highly associated variant per gene was estimated by adaptive permu-
tation with the setting “--permute 100 10000”. Permutation p-values obtained
via beta approximation were used to access genome wide significance via
Benjamini-Hochberg (FDR< 0.05). Downstream analyses were carried out in
R. Network analysis of reQTL genes was performed using the STRING 10.0
database37 selecting only interactions that were either experimentally validated
or originated from curated databases.

Replication of eQTLs. We compared our results with two previous reQTL studies.
For quantifying eQTL replication with a genome-wide study of monocyte eQTLs9,
we used Storey’s qvalue R package38. The π1 statistic considers the full distribution
of association p-values (from 0 to 1) and computes their estimated π0, the
proportion of eQTLs that are truly null based on their distribution. Replication is
reported as the quantity π1= 1−π0 that estimates the lower bound of the proportion
of truly alternative eQTLs.

Lee et al.8 used a targeted approach (415-gene signature) to identify eQTLs
after LPS, Flu or IFNβ treatment in dendritic cells. π0 could not be calculated
using Lee et al. because less than 10% of eQTL genes in our data were
represented in the 415 targeted genes, and thus replication was assessed by the
proportion of our eQTLs with nominal significance (p< 0.05) in Lee et al.

Detecting reQTLs by eQTL β-comparison. In each condition, we first determined
the best eQTL per gene (lead eSNP). Regression coefficient (β) and its variance (σ2)
of these eQTLs were calculated for all seven conditions using the linear model
function summary(lm()) in R. We then tested if the regression coefficient of an
eQTL was significantly different between two conditions in a z-test:

z¼ βbaseline � βstimulated
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ2baseline þ σ2stimulated

p

Resulting p-values were corrected for multiple testing using Bonferroni
correction (pbeta< 0.05). Previous reQTL studies6, 8, 10 have used differential
expression as a quantitative trait to identify reQTLs (pdiff). We calculated pdiff
for all reQTLs identified by β-comparison and used Spearman correlation as a
measure of similarity.

To detect treatment specificity of reQTLs, we tested all significant reQTLs
of one treatment (e.g., LPS90min) vs the other two treatments of the same time
point (e.g., RNA90 and MDP90min) in two separate z-tests. A reQTL was
treatment-specific if the Bonferroni-corrected p-value in the z-test was< 0.05.
To detect time point specificity of reQTLs, for each treatment, we tested all
significant reQTLs of one time point (e.g., LPS90min) vs the other time point
(e.g. LPS6h) in a z-test. Time point-specific reQTLs were determined using
Bonferroni-corrected p-values (p< 0.05). To compare reQTLs with eQTLs that
are constitutively active (ceQTL), we defined ceQTLs as eQTLs with pbeta> 0.05
when testing each of the six stimulated conditions with the baseline condition.

Characterizing dynamics of reQTLs. To study the dynamics of reQTLs, we
encoded as a binary call whether reQTLs had a significant eQTL p-value at each of
the three time points or not (e.g., “0-1-0” codes for “not significant eQTL at 0 min
—significant at 90 min—not significant at 6 h”). If a reQTL was shared between
treatments, the treatment with the best p-value was used. This resulted in following
groups: Transiently active (“0-1-0”), transiently suppressing (“1-0-1”), late active
(“0-0-1”), late suppressing (“1-1-0”), prolonged active (“0-1-1”), and prolonged
suppressing (“1-0-0”) reQTLs. The average of absolute eQTL-β and distribution of
reQTL among these groups are shown in Fig. 2d (left panel). Of note, 83 reQTLs
that were significant at all three time points (“1-1-1”) but with significant changes
of the eQTL effect size are not illustrated and were excluded from the following
analysis.

To further examine if eQTL-β and differential expression (DE) of the eQTL
gene are congruent, DE between baseline and 90 min stimulation (Δ90 min-baseline)
and DE between 90 min and 6 h stimulation (Δ6 h-90 min) were calculated using
limma and significant Δ90 min-baseline (p< 0.01) was encoded in binary (0;1)
whereas significant Δ6 h-90 min was encoded as “not significant” (0), “significant”
(1), “significant, but opposite direction of Δ90 min-baseline” (2). To determine
the proportion of reQTL genes with congruent DE, we quantified for transiently
active/suppressing reQTLs the proportion of reQTL genes with significant
Δ90 min-baseline and significant Δ6 h-90 min with opposite direction (“1-2”), for late
active/suppressing reQTLs we quantified the proportion of reQTL genes with

not significant Δ90 min-baseline and significant Δ6 h-90 min (“0-1”) and for prolonged
active/suppressing reQTLs we quantified the proportion of reQTL genes with
significant Δ90 min-baseline and either not significant Δ6 h-90 min (expression stays the
same) or significant Δ6 h-90 min with same direction (fold change increases, “1-0” or
“1-1”). To test if the proportion of reQTL genes with congruent DE was
significantly enriched in each group (e.g., 37 congruent out of 71 transiently active
reQTLs), we quantified the proportions of the same DE code (e.g., “1-2”) in the
remaining groups (late active/suppressing and prolonged active/suppressing) and
tested the proportions using Fisher’s exact test.

Enrichment of functional annotations and fine mapping. We used the fgwas12

software to investigate the extent to which reQTLs and ceQTLs were enriched
within specific annotation categories. Annotation information used by fgwas was
derived from CADD variant consequence annotation39 (14 annotations) and
monocyte-specific annotations from Ensembl Regulatory build40 (6 annotations).
To identify the set of annotations that would best fit the model, we first tested each
of the 20 annotations in a joint data set of reQTLs and ceQTLs including distance
to TSS in the analysis. Sixteen annotations individually improved the model
likelihood but as many of these annotations are correlated with one another we
used a stepwise selection approach to identify a final best-fitting model that
included 13 annotations asterisked in Fig. 3b. We then ran fgwas including these 13
annotations for reQTLs and ceQTLs separately to estimate enrichment parameters
and output re-weighted summary statistics.

For each locus that contained at least one SNP with a posterior probability of
association (PPA) > 0.3, we considered the SNP with the highest PPA from fgwas
and tested the overlap of functional annotation sites of reQTL vs ceQTLs using
Fisher’s exact test. To increase power of reQTLs/ceQTLs overlapping functional
annotation sites, we mapped eQTLs using the mean of gene expression across all
seven conditions. Fgwas steps were repeated as described above. Estimated
enrichment parameters showed similar results and indicate the robustness of our
analysis (Supplementary Fig. 8b).

Natural selection analysis. We used two metrics, iHS and SDS, which detect
signals of positive selection. The integrated haplotype score (iHS) measures the
degree of extended haplotype homozygosity of the putatively selected allele over
that of the putatively neutral allele15. iHS were calculated with the program selscan
v1.1.0b41 with default parameters. We defined high iHS values as |iHS| > 1.5 in
the CEU population. Furthermore, we used the recently published singleton
density score (SDS)16, which detects very recent changes in allele frequencies
from contemporary genome sequences. Publicly available SNP level SDS scores
calculated from the UK10K Project reflect allele frequency changes during the past
~2000–3000 years in modern Britons, who are closely related to the German
population42. We therefore applied these SDS scores to our cohort.

For each statistic (iHS, SDS), we determined the strongest signal of selection of
all SNPs in high LD (r2> 0.8) with the best eQTL/ceQTL/reQTL SNP per gene. To
assess significance, we then compared for each eQTL set the proportion of SNPs
with |iHS| > 1.5 with the expected distribution obtained from re-sampling
10,000 sets of random SNPs matched for MAF and the number of SNPs in LD
using the same parameters as described in Quach et al.11 using bins of MAF of 0.05
and LD bins of 0–2, 3–5, 6–10, 11–20, 21–50, and> 50 SNPs with r2> 0.8).
Similarly, for SDS, we compared the median of SDS scores of eQTLs/ceQTLs/
reQTLs, to the expected distribution obtained from resampling 10,000 sets of
random SNPs matched for MAF and LD patterns.

To determine the effect of the derived allele on the immune response, we tested
the proportion of reQTLs where the derived allele causes an increase vs decrease in
response amplitude compared to the ancestral allele (Fig. 3d). reQTLs with
increased activity include both reQTLs where the derived allele amplifies the
induction of a gene or amplifies the suppression of a gene, whereas reQTLs with
decreased activity will either reduce the induction of a gene or reduce the
suppression of a gene. Over representation of reQTLs with increased activity was
evaluated using a binomial test.

Colocalization analysis. Colocalization analysis was conducted using the R
package coloc17. The method requires summary statistics for each SNP, which were
summarized in Pickrell et al.43 or downloaded from ImmunoBase (http://www.
immunobase.org) along with our eQTL data. A list of GWAS traits used in this
analysis is provided in Supplementary Data 3. Coloc uses summary data from
eQTL and GWAS studies in a Bayesian framework to identify GWAS signals that
colocalize with eQTLs. We ran coloc using default parameter settings and a
colocalization prior p12= 10−6. Coloc estimates posterior probability of association
for either trait (PP0), association with gene expression (PP1), association with the
trait (PP2), association with both phenotypes but distinct causal variants (PP3) and
association with both phenotypes sharing the same causal variant (PP4). Regions
with evidence for colocalization between gene expression and trait were defined as
PP3 + PP4≥ 0.90 and PP4/PP3 ≥ 3 similar to what has been proposed by Guo
et al.44 and are illustrated in Fig. 4a.

As eQTL summary statistics in the coloc analysis, we used two approaches to
maximize our discovery power. First, from each locus we used the summary
statistics of the condition with the strongest p-value. This is expected to provide
robust discovery even in highly condition-specific loci. Furthermore, we also ran

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-00366-1

8 NATURE COMMUNICATIONS |8:  266 |DOI: 10.1038/s41467-017-00366-1 |www.nature.com/naturecommunications

http://www.immunobase.org
http://www.immunobase.org
www.nature.com/naturecommunications


coloc with eQTLs mapped using the mean of gene expression across all seven
conditions, which is expected to improve power when the eQTL signal is present in
many conditions. All coloc results with PP3 + PP4≥ 0.90 are reported in
Supplementary Data 3.

Overlap between reQTLs and GWAS catalog. To assess the overlap between
reQTLs and trait-associated variants, we downloaded the NHGRI-EBI GWAS
Catalog (version 1.0.1, downloaded 2016/06/14). A reported GWAS SNP was
considered to coincide with an reQTL if the GWAS SNP was in high LD (r2> 0.8)
with the lead eSNP per gene. A full list of these GWAS reQTLs is provided in
Supplementary Data 4.

Estimating the contribution of reQTLs on immune traits. We used the fgwas12

software to investigate the extent to which reQTLs and ceQTLs were enriched in
risk loci of immune-mediated traits, following the approach of Li et al.23. A list of
GWAS traits used in this analysis is provided in Supplementary Data 3. Due to the
limited number of 417 reQTLs and 677 ceQTLs, we loosened the eQTL cutoffs for
reQTLs and ceQTLs. For reQTLs, we considered all reQTLs that were significant
after Benjamini-Hochberg FDR 5% correction (instead of Bonferroni correction),
which resulted in 1128 reQTLs. For ceQTLs, we considered all ceQTLs with
pbeta> 0.005 when testing each of the six stimulated conditions with the baseline
condition, which resulted in 1165 ceQTLs. For both eQTLs, all associations with
p< 10−4 were used as input, and fgwas analysis was performed for reQTLs and
ceQTLs separately. Of note, this analysis was robust to different eQTL association
p-value cutoffs (p < 10−4, 10−5, 10−6) suggesting that the enrichment is not simply
due to the power of detection (Supplementary Fig. 10, Supplementary Fig. 11).

Data availability. Full summary statistics of the eQTL analysis and gene expres-
sion data are available in the ArrayExpress database (www.ebi.ac.uk/arrayexpress)
under accession number E-MTAB-5631. In addition to results tables for all seven
conditions provided in Supplementary Data 2, all eQTL results are available in the
ImmunPop QTL browser (http://immunpop.com/kim/eQTL), which provides
multiple interactive visualization and data exploration features for eQTLs.
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